Independent component analysis applied on gas sensor array measurement data
The performance of gas-sensor array systems is greatly influenced by the pattern recognition scheme applied on the instrument's measurement data. The traditional method of choice is principal component analysis (PCA), aiming for reduction in dimensionality and visualization of multivariate meas...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2003-04, Vol.3 (2), p.218-228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 2 |
container_start_page | 218 |
container_title | IEEE sensors journal |
container_volume | 3 |
creator | Kermit, M. Tomic, O. |
description | The performance of gas-sensor array systems is greatly influenced by the pattern recognition scheme applied on the instrument's measurement data. The traditional method of choice is principal component analysis (PCA), aiming for reduction in dimensionality and visualization of multivariate measurement data. PCA, as a second-order statistical tool, performs well in many cases, but lacks the ability to give meaningful representations for non-Gaussian data, which often is a property of gas-sensor array measurement data. If, instead, higher order statistical methods are considered for data analysis, more useful information can be extracted from the data. This paper introduces the higher order statistical method called independent component analysis (ICA) as a novel tool for analysis of gas-sensor array measurement data. A comparison between the performances of PCA and ICA is illustrated both in theory and for two sets of practical measurement data. The described experiments show that ICA is capable of handling sensor drift combined with improved discrimination, dimensionality reduction, and more adequate data representation when compared to PCA. |
doi_str_mv | 10.1109/JSEN.2002.807488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2002_807488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202947</ieee_id><sourcerecordid>28434315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-905fc12ec24d1cd8ce7c373b0fb68b7b252c492d8314a9f804b8be3d1c29d66a3</originalsourceid><addsrcrecordid>eNp9kctrGzEQxkVpoa6be6CXpZDktK5ea0nHYNzGiWkPTSA3MaudLWv2VY198H8fLQ4YcshlHszvm4H5GLsUfCEEdz_u_65_LyTncmG50dZ-YDNRFDYXqfk41YrnWpnnz-wL0Y5z4UxhZuxh01c4Ygr9PgtDNw79VEEP7ZEaymAc2warbOizf0AZYU9DzCBGOGYdAh0idpOggj18ZZ9qaAkvXvOcPf1cP67u8u2fX5vV7TYPyop97nhRByExSF2JUNmAJiijSl6XS1uaUhYyaCcrq4QGV1uuS1uiSqx01XIJas5uTnvHOPw_IO1911DAtoUehwN5x4XhRrplIq_fJaXVSqv0mzn7_gbcDYeYnkDeWi2lEIVIED9BIQ5EEWs_xqaDePSC-8kEP5ngJxP8yYQkuXrdCxSgrSP0oaGzLjHSuun-txPXIOJ5LLl02qgXkJSPwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884221151</pqid></control><display><type>article</type><title>Independent component analysis applied on gas sensor array measurement data</title><source>IEEE Xplore / Electronic Library Online (IEL)</source><creator>Kermit, M. ; Tomic, O.</creator><creatorcontrib>Kermit, M. ; Tomic, O.</creatorcontrib><description>The performance of gas-sensor array systems is greatly influenced by the pattern recognition scheme applied on the instrument's measurement data. The traditional method of choice is principal component analysis (PCA), aiming for reduction in dimensionality and visualization of multivariate measurement data. PCA, as a second-order statistical tool, performs well in many cases, but lacks the ability to give meaningful representations for non-Gaussian data, which often is a property of gas-sensor array measurement data. If, instead, higher order statistical methods are considered for data analysis, more useful information can be extracted from the data. This paper introduces the higher order statistical method called independent component analysis (ICA) as a novel tool for analysis of gas-sensor array measurement data. A comparison between the performances of PCA and ICA is illustrated both in theory and for two sets of practical measurement data. The described experiments show that ICA is capable of handling sensor drift combined with improved discrimination, dimensionality reduction, and more adequate data representation when compared to PCA.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2002.807488</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Arrays ; Data analysis ; Data visualization ; Exact sciences and technology ; Gas detectors ; General equipment and techniques ; Independent component analysis ; Instruments ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials handling ; Pattern recognition ; Performance evaluation ; Physics ; Principal component analysis ; Principal components analysis ; Reduction ; Representations ; Sensor arrays ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Statistical analysis ; Statistical methods ; Studies</subject><ispartof>IEEE sensors journal, 2003-04, Vol.3 (2), p.218-228</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-905fc12ec24d1cd8ce7c373b0fb68b7b252c492d8314a9f804b8be3d1c29d66a3</citedby><cites>FETCH-LOGICAL-c381t-905fc12ec24d1cd8ce7c373b0fb68b7b252c492d8314a9f804b8be3d1c29d66a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202947$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14882895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kermit, M.</creatorcontrib><creatorcontrib>Tomic, O.</creatorcontrib><title>Independent component analysis applied on gas sensor array measurement data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The performance of gas-sensor array systems is greatly influenced by the pattern recognition scheme applied on the instrument's measurement data. The traditional method of choice is principal component analysis (PCA), aiming for reduction in dimensionality and visualization of multivariate measurement data. PCA, as a second-order statistical tool, performs well in many cases, but lacks the ability to give meaningful representations for non-Gaussian data, which often is a property of gas-sensor array measurement data. If, instead, higher order statistical methods are considered for data analysis, more useful information can be extracted from the data. This paper introduces the higher order statistical method called independent component analysis (ICA) as a novel tool for analysis of gas-sensor array measurement data. A comparison between the performances of PCA and ICA is illustrated both in theory and for two sets of practical measurement data. The described experiments show that ICA is capable of handling sensor drift combined with improved discrimination, dimensionality reduction, and more adequate data representation when compared to PCA.</description><subject>Arrays</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Exact sciences and technology</subject><subject>Gas detectors</subject><subject>General equipment and techniques</subject><subject>Independent component analysis</subject><subject>Instruments</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials handling</subject><subject>Pattern recognition</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Representations</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctrGzEQxkVpoa6be6CXpZDktK5ea0nHYNzGiWkPTSA3MaudLWv2VY198H8fLQ4YcshlHszvm4H5GLsUfCEEdz_u_65_LyTncmG50dZ-YDNRFDYXqfk41YrnWpnnz-wL0Y5z4UxhZuxh01c4Ygr9PgtDNw79VEEP7ZEaymAc2warbOizf0AZYU9DzCBGOGYdAh0idpOggj18ZZ9qaAkvXvOcPf1cP67u8u2fX5vV7TYPyop97nhRByExSF2JUNmAJiijSl6XS1uaUhYyaCcrq4QGV1uuS1uiSqx01XIJas5uTnvHOPw_IO1911DAtoUehwN5x4XhRrplIq_fJaXVSqv0mzn7_gbcDYeYnkDeWi2lEIVIED9BIQ5EEWs_xqaDePSC-8kEP5ngJxP8yYQkuXrdCxSgrSP0oaGzLjHSuun-txPXIOJ5LLl02qgXkJSPwg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Kermit, M.</creator><creator>Tomic, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030401</creationdate><title>Independent component analysis applied on gas sensor array measurement data</title><author>Kermit, M. ; Tomic, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-905fc12ec24d1cd8ce7c373b0fb68b7b252c492d8314a9f804b8be3d1c29d66a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Arrays</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Exact sciences and technology</topic><topic>Gas detectors</topic><topic>General equipment and techniques</topic><topic>Independent component analysis</topic><topic>Instruments</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials handling</topic><topic>Pattern recognition</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Representations</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kermit, M.</creatorcontrib><creatorcontrib>Tomic, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kermit, M.</au><au>Tomic, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent component analysis applied on gas sensor array measurement data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>3</volume><issue>2</issue><spage>218</spage><epage>228</epage><pages>218-228</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The performance of gas-sensor array systems is greatly influenced by the pattern recognition scheme applied on the instrument's measurement data. The traditional method of choice is principal component analysis (PCA), aiming for reduction in dimensionality and visualization of multivariate measurement data. PCA, as a second-order statistical tool, performs well in many cases, but lacks the ability to give meaningful representations for non-Gaussian data, which often is a property of gas-sensor array measurement data. If, instead, higher order statistical methods are considered for data analysis, more useful information can be extracted from the data. This paper introduces the higher order statistical method called independent component analysis (ICA) as a novel tool for analysis of gas-sensor array measurement data. A comparison between the performances of PCA and ICA is illustrated both in theory and for two sets of practical measurement data. The described experiments show that ICA is capable of handling sensor drift combined with improved discrimination, dimensionality reduction, and more adequate data representation when compared to PCA.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSEN.2002.807488</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2003-04, Vol.3 (2), p.218-228 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2002_807488 |
source | IEEE Xplore / Electronic Library Online (IEL) |
subjects | Arrays Data analysis Data visualization Exact sciences and technology Gas detectors General equipment and techniques Independent component analysis Instruments Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials handling Pattern recognition Performance evaluation Physics Principal component analysis Principal components analysis Reduction Representations Sensor arrays Sensors Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Statistical analysis Statistical methods Studies |
title | Independent component analysis applied on gas sensor array measurement data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20component%20analysis%20applied%20on%20gas%20sensor%20array%20measurement%20data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Kermit,%20M.&rft.date=2003-04-01&rft.volume=3&rft.issue=2&rft.spage=218&rft.epage=228&rft.pages=218-228&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2002.807488&rft_dat=%3Cproquest_RIE%3E28434315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884221151&rft_id=info:pmid/&rft_ieee_id=1202947&rfr_iscdi=true |