SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning

Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Journal of Selected Areas in Sensors 2024, Vol.1, p.237-248
Hauptverfasser: Li, Wenxuan, Zhang, Dongheng, Li, Yadong, Song, Ruiyuan, Hu, Yang, Sun, Qibin, Chen, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue
container_start_page 237
container_title IEEE Journal of Selected Areas in Sensors
container_volume 1
creator Li, Wenxuan
Zhang, Dongheng
Li, Yadong
Song, Ruiyuan
Hu, Yang
Sun, Qibin
Chen, Yan
description Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.
doi_str_mv 10.1109/JSAS.2024.3481205
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAS_2024_3481205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716775</ieee_id><sourcerecordid>10_1109_JSAS_2024_3481205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3</originalsourceid><addsrcrecordid>eNpNkN1Kw0AQRhdRsNQ-gODFvkDq_mY33pVoqxIQmkrxKkySiS6kadmNBd_ehPaiV_MNfGdgDiH3nM05Z8nje77I54IJNZfKcsH0FZkIK-NIMMOvL_ItmYXgSqa1NjaxakK-8jSLltC2T3SNrYOyRTqu9Bl7rHq37-hncN033e22cES6hho83br-h-a_B_RHF7Cm6b7rPYTeDY0MwXcDcUduGmgDzs5zSjbLl036GmUfq7d0kUVVLHUEAqq4AW0M01iyxBqmLEBiTG1QJ7LUVqrGKqhMLJqKI6iG2UTKeHhC2FJOCT-drfw-BI9NcfBuB_6v4KwY7RSjnWK0U5ztDMzDiXGIeNE3PDZGy3_MRGAm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</title><source>Alma/SFX Local Collection</source><creator>Li, Wenxuan ; Zhang, Dongheng ; Li, Yadong ; Song, Ruiyuan ; Hu, Yang ; Sun, Qibin ; Chen, Yan</creator><creatorcontrib>Li, Wenxuan ; Zhang, Dongheng ; Li, Yadong ; Song, Ruiyuan ; Hu, Yang ; Sun, Qibin ; Chen, Yan</creatorcontrib><description>Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.</description><identifier>ISSN: 2836-2071</identifier><identifier>EISSN: 2836-2071</identifier><identifier>DOI: 10.1109/JSAS.2024.3481205</identifier><identifier>CODEN: IJSAB6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Contrastive learning ; data augmentation ; Fall detection ; Feature extraction ; Millimeter wave radar ; neural network ; Neural networks ; Radar ; Real-time systems ; Sensors ; wireless sensing ; Wireless sensor networks</subject><ispartof>IEEE Journal of Selected Areas in Sensors, 2024, Vol.1, p.237-248</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3</cites><orcidid>0009-0009-7720-7257 ; 0000-0002-6789-7460 ; 0009-0004-3654-965X ; 0000-0003-0379-1525 ; 0000-0001-6309-6626 ; 0000-0002-3227-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Wenxuan</creatorcontrib><creatorcontrib>Zhang, Dongheng</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><creatorcontrib>Song, Ruiyuan</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Sun, Qibin</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><title>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</title><title>IEEE Journal of Selected Areas in Sensors</title><addtitle>JSAS</addtitle><description>Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.</description><subject>Accuracy</subject><subject>Contrastive learning</subject><subject>data augmentation</subject><subject>Fall detection</subject><subject>Feature extraction</subject><subject>Millimeter wave radar</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Radar</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>wireless sensing</subject><subject>Wireless sensor networks</subject><issn>2836-2071</issn><issn>2836-2071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkN1Kw0AQRhdRsNQ-gODFvkDq_mY33pVoqxIQmkrxKkySiS6kadmNBd_ehPaiV_MNfGdgDiH3nM05Z8nje77I54IJNZfKcsH0FZkIK-NIMMOvL_ItmYXgSqa1NjaxakK-8jSLltC2T3SNrYOyRTqu9Bl7rHq37-hncN033e22cES6hho83br-h-a_B_RHF7Cm6b7rPYTeDY0MwXcDcUduGmgDzs5zSjbLl036GmUfq7d0kUVVLHUEAqq4AW0M01iyxBqmLEBiTG1QJ7LUVqrGKqhMLJqKI6iG2UTKeHhC2FJOCT-drfw-BI9NcfBuB_6v4KwY7RSjnWK0U5ztDMzDiXGIeNE3PDZGy3_MRGAm</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Wenxuan</creator><creator>Zhang, Dongheng</creator><creator>Li, Yadong</creator><creator>Song, Ruiyuan</creator><creator>Hu, Yang</creator><creator>Sun, Qibin</creator><creator>Chen, Yan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7720-7257</orcidid><orcidid>https://orcid.org/0000-0002-6789-7460</orcidid><orcidid>https://orcid.org/0009-0004-3654-965X</orcidid><orcidid>https://orcid.org/0000-0003-0379-1525</orcidid><orcidid>https://orcid.org/0000-0001-6309-6626</orcidid><orcidid>https://orcid.org/0000-0002-3227-4562</orcidid></search><sort><creationdate>2024</creationdate><title>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</title><author>Li, Wenxuan ; Zhang, Dongheng ; Li, Yadong ; Song, Ruiyuan ; Hu, Yang ; Sun, Qibin ; Chen, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-a2ac6fa57705eb0987048aa977d7e593b5834f84ac762fc1ea4f08933605528b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Contrastive learning</topic><topic>data augmentation</topic><topic>Fall detection</topic><topic>Feature extraction</topic><topic>Millimeter wave radar</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Radar</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>wireless sensing</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenxuan</creatorcontrib><creatorcontrib>Zhang, Dongheng</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><creatorcontrib>Song, Ruiyuan</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Sun, Qibin</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE Journal of Selected Areas in Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenxuan</au><au>Zhang, Dongheng</au><au>Li, Yadong</au><au>Song, Ruiyuan</au><au>Hu, Yang</au><au>Sun, Qibin</au><au>Chen, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning</atitle><jtitle>IEEE Journal of Selected Areas in Sensors</jtitle><stitle>JSAS</stitle><date>2024</date><risdate>2024</risdate><volume>1</volume><spage>237</spage><epage>248</epage><pages>237-248</pages><issn>2836-2071</issn><eissn>2836-2071</eissn><coden>IJSAB6</coden><abstract>Fall is a severe health threat for elders' health care. While existing systems could achieve promising performance under specific scenarios, the required computing resources are usually not affordable, which is not applicable for real-time detection. In this article, we propose SCL-Fall, a real-time fall detection system using millimeter wave signal with supervised contrastive learning, which can achieve impressive accuracy with low computation complexity. Specifically, we first extract the signal variation corresponding to human activity with spatial-temporal processing. We incorporate reweighting and denoising techniques in the signal processing process. To enhance the system performance and robustness, we perform data augmentation by shifting, flipping, extracting, and interpolating the signal. Finally, we design a lightweight convolutional neural network to achieve real-time fall detection. Extensive experimental results demonstrate that the proposed system could achieve state-of-the-art performance with limited computation complexity.</abstract><pub>IEEE</pub><doi>10.1109/JSAS.2024.3481205</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0009-7720-7257</orcidid><orcidid>https://orcid.org/0000-0002-6789-7460</orcidid><orcidid>https://orcid.org/0009-0004-3654-965X</orcidid><orcidid>https://orcid.org/0000-0003-0379-1525</orcidid><orcidid>https://orcid.org/0000-0001-6309-6626</orcidid><orcidid>https://orcid.org/0000-0002-3227-4562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2836-2071
ispartof IEEE Journal of Selected Areas in Sensors, 2024, Vol.1, p.237-248
issn 2836-2071
2836-2071
language eng
recordid cdi_crossref_primary_10_1109_JSAS_2024_3481205
source Alma/SFX Local Collection
subjects Accuracy
Contrastive learning
data augmentation
Fall detection
Feature extraction
Millimeter wave radar
neural network
Neural networks
Radar
Real-time systems
Sensors
wireless sensing
Wireless sensor networks
title SCL-Fall: Reliable Fall Detection Using mmWave Radar With Supervised Contrastive Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCL-Fall:%20Reliable%20Fall%20Detection%20Using%20mmWave%20Radar%20With%20Supervised%20Contrastive%20Learning&rft.jtitle=IEEE%20Journal%20of%20Selected%20Areas%20in%20Sensors&rft.au=Li,%20Wenxuan&rft.date=2024&rft.volume=1&rft.spage=237&rft.epage=248&rft.pages=237-248&rft.issn=2836-2071&rft.eissn=2836-2071&rft.coden=IJSAB6&rft_id=info:doi/10.1109/JSAS.2024.3481205&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSAS_2024_3481205%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10716775&rfr_iscdi=true