A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM
Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, le...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2022-07, Vol.40 (7), p.2179-2192 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2192 |
---|---|
container_issue | 7 |
container_start_page | 2179 |
container_title | IEEE journal on selected areas in communications |
container_volume | 40 |
creator | Ge, Yu Kaltiokallio, Ossi Kim, Hyowon Jiang, Fan Talvitie, Jukka Valkama, Mikko Svensson, Lennart Kim, Sunwoo Wymeersch, Henk |
description | Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation. |
doi_str_mv | 10.1109/JSAC.2022.3155504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2022_3155504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9724223</ieee_id><sourcerecordid>2677852725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EEqHwAxAXSxzRBn-sP_a4DWkpJCoifBxHjndMXO3Wwd606r9no1S9cZqR5plnpHkJecvZnHPWfPyyaRdzwYSYS66UYvUzMpsaWzHG7HMyY0bKyhquX5JXpdwwxuvaihm5aukiDfvD6MaYbl3fP9BlCNFHvB3p8mv1bX2-phexHzHTkDI9j-WIejoMv90d0u-ui4luVu36NXkRXF_wzWM9Iz8vlj8Wn6vV9eXVol1Vfro4Vtg1tXXMdsikb7g1MnRGKSm97DwGpRqNPphpisx655XZGm6l1cGZjjMhz8jm5C33uD9sYZ_j4PIDJBchY0GX_Q78zvUD5gIFgRnNtVQMtg4F1F5LaLxyoJq681wFqfV2sn74r_VT_NVCyn9gt4O64cpO9PsTvc_p7wHLCDfpkKf3FRDaGKuEEWqi-InyOZWSMTxZOYNjanBMDY6pwWNq0867005ExCe-MaIWQsp_EuSRHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677852725</pqid></control><display><type>article</type><title>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Ge, Yu ; Kaltiokallio, Ossi ; Kim, Hyowon ; Jiang, Fan ; Talvitie, Jukka ; Valkama, Mikko ; Svensson, Lennart ; Kim, Sunwoo ; Wymeersch, Henk</creator><creatorcontrib>Ge, Yu ; Kaltiokallio, Ossi ; Kim, Hyowon ; Jiang, Fan ; Talvitie, Jukka ; Valkama, Mikko ; Svensson, Lennart ; Kim, Sunwoo ; Wymeersch, Henk</creatorcontrib><description>Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.</description><identifier>ISSN: 0733-8716</identifier><identifier>ISSN: 1558-0008</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2022.3155504</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bistatic sensing ; Complexity ; Complexity theory ; Computational efficiency ; Computational modeling ; Computing costs ; extended Kalman filter ; Filtering algorithms ; Kalman filters ; Millimeter waves ; mmWave sensing ; Poisson multi-Bernoulli mixture filter ; Propagation ; Receivers ; Sensors ; Simultaneous localization and mapping ; State estimation ; Taylor series</subject><ispartof>IEEE journal on selected areas in communications, 2022-07, Vol.40 (7), p.2179-2192</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</citedby><cites>FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</cites><orcidid>0000-0003-0598-0178 ; 0000-0003-1747-2664 ; 0000-0002-0473-1471 ; 0000-0003-0361-0800 ; 0000-0001-7685-7666 ; 0000-0002-7055-6587 ; 0000-0003-0206-9186 ; 0000-0002-1298-6159 ; 0000-0002-9336-7703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9724223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,550,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9724223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-49158$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/529031$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Yu</creatorcontrib><creatorcontrib>Kaltiokallio, Ossi</creatorcontrib><creatorcontrib>Kim, Hyowon</creatorcontrib><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Talvitie, Jukka</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Svensson, Lennart</creatorcontrib><creatorcontrib>Kim, Sunwoo</creatorcontrib><creatorcontrib>Wymeersch, Henk</creatorcontrib><title>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.</description><subject>Algorithms</subject><subject>Bistatic sensing</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computing costs</subject><subject>extended Kalman filter</subject><subject>Filtering algorithms</subject><subject>Kalman filters</subject><subject>Millimeter waves</subject><subject>mmWave sensing</subject><subject>Poisson multi-Bernoulli mixture filter</subject><subject>Propagation</subject><subject>Receivers</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>State estimation</subject><subject>Taylor series</subject><issn>0733-8716</issn><issn>1558-0008</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNp1kU1vEzEQhi0EEqHwAxAXSxzRBn-sP_a4DWkpJCoifBxHjndMXO3Wwd606r9no1S9cZqR5plnpHkJecvZnHPWfPyyaRdzwYSYS66UYvUzMpsaWzHG7HMyY0bKyhquX5JXpdwwxuvaihm5aukiDfvD6MaYbl3fP9BlCNFHvB3p8mv1bX2-phexHzHTkDI9j-WIejoMv90d0u-ui4luVu36NXkRXF_wzWM9Iz8vlj8Wn6vV9eXVol1Vfro4Vtg1tXXMdsikb7g1MnRGKSm97DwGpRqNPphpisx655XZGm6l1cGZjjMhz8jm5C33uD9sYZ_j4PIDJBchY0GX_Q78zvUD5gIFgRnNtVQMtg4F1F5LaLxyoJq681wFqfV2sn74r_VT_NVCyn9gt4O64cpO9PsTvc_p7wHLCDfpkKf3FRDaGKuEEWqi-InyOZWSMTxZOYNjanBMDY6pwWNq0867005ExCe-MaIWQsp_EuSRHg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ge, Yu</creator><creator>Kaltiokallio, Ossi</creator><creator>Kim, Hyowon</creator><creator>Jiang, Fan</creator><creator>Talvitie, Jukka</creator><creator>Valkama, Mikko</creator><creator>Svensson, Lennart</creator><creator>Kim, Sunwoo</creator><creator>Wymeersch, Henk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>AAXBQ</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8Z</scope><scope>ZZAVC</scope><scope>ABBSD</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0003-0598-0178</orcidid><orcidid>https://orcid.org/0000-0003-1747-2664</orcidid><orcidid>https://orcid.org/0000-0002-0473-1471</orcidid><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0001-7685-7666</orcidid><orcidid>https://orcid.org/0000-0002-7055-6587</orcidid><orcidid>https://orcid.org/0000-0003-0206-9186</orcidid><orcidid>https://orcid.org/0000-0002-1298-6159</orcidid><orcidid>https://orcid.org/0000-0002-9336-7703</orcidid></search><sort><creationdate>20220701</creationdate><title>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</title><author>Ge, Yu ; Kaltiokallio, Ossi ; Kim, Hyowon ; Jiang, Fan ; Talvitie, Jukka ; Valkama, Mikko ; Svensson, Lennart ; Kim, Sunwoo ; Wymeersch, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bistatic sensing</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computing costs</topic><topic>extended Kalman filter</topic><topic>Filtering algorithms</topic><topic>Kalman filters</topic><topic>Millimeter waves</topic><topic>mmWave sensing</topic><topic>Poisson multi-Bernoulli mixture filter</topic><topic>Propagation</topic><topic>Receivers</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>State estimation</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yu</creatorcontrib><creatorcontrib>Kaltiokallio, Ossi</creatorcontrib><creatorcontrib>Kim, Hyowon</creatorcontrib><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Talvitie, Jukka</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Svensson, Lennart</creatorcontrib><creatorcontrib>Kim, Sunwoo</creatorcontrib><creatorcontrib>Wymeersch, Henk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Högskolan i Halmstad full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Högskolan i Halmstad</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge, Yu</au><au>Kaltiokallio, Ossi</au><au>Kim, Hyowon</au><au>Jiang, Fan</au><au>Talvitie, Jukka</au><au>Valkama, Mikko</au><au>Svensson, Lennart</au><au>Kim, Sunwoo</au><au>Wymeersch, Henk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>40</volume><issue>7</issue><spage>2179</spage><epage>2192</epage><pages>2179-2192</pages><issn>0733-8716</issn><issn>1558-0008</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2022.3155504</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0598-0178</orcidid><orcidid>https://orcid.org/0000-0003-1747-2664</orcidid><orcidid>https://orcid.org/0000-0002-0473-1471</orcidid><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0001-7685-7666</orcidid><orcidid>https://orcid.org/0000-0002-7055-6587</orcidid><orcidid>https://orcid.org/0000-0003-0206-9186</orcidid><orcidid>https://orcid.org/0000-0002-1298-6159</orcidid><orcidid>https://orcid.org/0000-0002-9336-7703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2022-07, Vol.40 (7), p.2179-2192 |
issn | 0733-8716 1558-0008 1558-0008 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSAC_2022_3155504 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bistatic sensing Complexity Complexity theory Computational efficiency Computational modeling Computing costs extended Kalman filter Filtering algorithms Kalman filters Millimeter waves mmWave sensing Poisson multi-Bernoulli mixture filter Propagation Receivers Sensors Simultaneous localization and mapping State estimation Taylor series |
title | A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computationally%20Efficient%20EK-PMBM%20Filter%20for%20Bistatic%20mmWave%20Radio%20SLAM&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ge,%20Yu&rft.date=2022-07-01&rft.volume=40&rft.issue=7&rft.spage=2179&rft.epage=2192&rft.pages=2179-2192&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2022.3155504&rft_dat=%3Cproquest_RIE%3E2677852725%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677852725&rft_id=info:pmid/&rft_ieee_id=9724223&rfr_iscdi=true |