A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM

Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2022-07, Vol.40 (7), p.2179-2192
Hauptverfasser: Ge, Yu, Kaltiokallio, Ossi, Kim, Hyowon, Jiang, Fan, Talvitie, Jukka, Valkama, Mikko, Svensson, Lennart, Kim, Sunwoo, Wymeersch, Henk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2192
container_issue 7
container_start_page 2179
container_title IEEE journal on selected areas in communications
container_volume 40
creator Ge, Yu
Kaltiokallio, Ossi
Kim, Hyowon
Jiang, Fan
Talvitie, Jukka
Valkama, Mikko
Svensson, Lennart
Kim, Sunwoo
Wymeersch, Henk
description Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.
doi_str_mv 10.1109/JSAC.2022.3155504
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2022_3155504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9724223</ieee_id><sourcerecordid>2677852725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EEqHwAxAXSxzRBn-sP_a4DWkpJCoifBxHjndMXO3Wwd606r9no1S9cZqR5plnpHkJecvZnHPWfPyyaRdzwYSYS66UYvUzMpsaWzHG7HMyY0bKyhquX5JXpdwwxuvaihm5aukiDfvD6MaYbl3fP9BlCNFHvB3p8mv1bX2-phexHzHTkDI9j-WIejoMv90d0u-ui4luVu36NXkRXF_wzWM9Iz8vlj8Wn6vV9eXVol1Vfro4Vtg1tXXMdsikb7g1MnRGKSm97DwGpRqNPphpisx655XZGm6l1cGZjjMhz8jm5C33uD9sYZ_j4PIDJBchY0GX_Q78zvUD5gIFgRnNtVQMtg4F1F5LaLxyoJq681wFqfV2sn74r_VT_NVCyn9gt4O64cpO9PsTvc_p7wHLCDfpkKf3FRDaGKuEEWqi-InyOZWSMTxZOYNjanBMDY6pwWNq0867005ExCe-MaIWQsp_EuSRHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677852725</pqid></control><display><type>article</type><title>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Ge, Yu ; Kaltiokallio, Ossi ; Kim, Hyowon ; Jiang, Fan ; Talvitie, Jukka ; Valkama, Mikko ; Svensson, Lennart ; Kim, Sunwoo ; Wymeersch, Henk</creator><creatorcontrib>Ge, Yu ; Kaltiokallio, Ossi ; Kim, Hyowon ; Jiang, Fan ; Talvitie, Jukka ; Valkama, Mikko ; Svensson, Lennart ; Kim, Sunwoo ; Wymeersch, Henk</creatorcontrib><description>Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.</description><identifier>ISSN: 0733-8716</identifier><identifier>ISSN: 1558-0008</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2022.3155504</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bistatic sensing ; Complexity ; Complexity theory ; Computational efficiency ; Computational modeling ; Computing costs ; extended Kalman filter ; Filtering algorithms ; Kalman filters ; Millimeter waves ; mmWave sensing ; Poisson multi-Bernoulli mixture filter ; Propagation ; Receivers ; Sensors ; Simultaneous localization and mapping ; State estimation ; Taylor series</subject><ispartof>IEEE journal on selected areas in communications, 2022-07, Vol.40 (7), p.2179-2192</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</citedby><cites>FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</cites><orcidid>0000-0003-0598-0178 ; 0000-0003-1747-2664 ; 0000-0002-0473-1471 ; 0000-0003-0361-0800 ; 0000-0001-7685-7666 ; 0000-0002-7055-6587 ; 0000-0003-0206-9186 ; 0000-0002-1298-6159 ; 0000-0002-9336-7703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9724223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,550,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9724223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-49158$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/529031$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Yu</creatorcontrib><creatorcontrib>Kaltiokallio, Ossi</creatorcontrib><creatorcontrib>Kim, Hyowon</creatorcontrib><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Talvitie, Jukka</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Svensson, Lennart</creatorcontrib><creatorcontrib>Kim, Sunwoo</creatorcontrib><creatorcontrib>Wymeersch, Henk</creatorcontrib><title>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.</description><subject>Algorithms</subject><subject>Bistatic sensing</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computing costs</subject><subject>extended Kalman filter</subject><subject>Filtering algorithms</subject><subject>Kalman filters</subject><subject>Millimeter waves</subject><subject>mmWave sensing</subject><subject>Poisson multi-Bernoulli mixture filter</subject><subject>Propagation</subject><subject>Receivers</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>State estimation</subject><subject>Taylor series</subject><issn>0733-8716</issn><issn>1558-0008</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNp1kU1vEzEQhi0EEqHwAxAXSxzRBn-sP_a4DWkpJCoifBxHjndMXO3Wwd606r9no1S9cZqR5plnpHkJecvZnHPWfPyyaRdzwYSYS66UYvUzMpsaWzHG7HMyY0bKyhquX5JXpdwwxuvaihm5aukiDfvD6MaYbl3fP9BlCNFHvB3p8mv1bX2-phexHzHTkDI9j-WIejoMv90d0u-ui4luVu36NXkRXF_wzWM9Iz8vlj8Wn6vV9eXVol1Vfro4Vtg1tXXMdsikb7g1MnRGKSm97DwGpRqNPphpisx655XZGm6l1cGZjjMhz8jm5C33uD9sYZ_j4PIDJBchY0GX_Q78zvUD5gIFgRnNtVQMtg4F1F5LaLxyoJq681wFqfV2sn74r_VT_NVCyn9gt4O64cpO9PsTvc_p7wHLCDfpkKf3FRDaGKuEEWqi-InyOZWSMTxZOYNjanBMDY6pwWNq0867005ExCe-MaIWQsp_EuSRHg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ge, Yu</creator><creator>Kaltiokallio, Ossi</creator><creator>Kim, Hyowon</creator><creator>Jiang, Fan</creator><creator>Talvitie, Jukka</creator><creator>Valkama, Mikko</creator><creator>Svensson, Lennart</creator><creator>Kim, Sunwoo</creator><creator>Wymeersch, Henk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>AAXBQ</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8Z</scope><scope>ZZAVC</scope><scope>ABBSD</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0003-0598-0178</orcidid><orcidid>https://orcid.org/0000-0003-1747-2664</orcidid><orcidid>https://orcid.org/0000-0002-0473-1471</orcidid><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0001-7685-7666</orcidid><orcidid>https://orcid.org/0000-0002-7055-6587</orcidid><orcidid>https://orcid.org/0000-0003-0206-9186</orcidid><orcidid>https://orcid.org/0000-0002-1298-6159</orcidid><orcidid>https://orcid.org/0000-0002-9336-7703</orcidid></search><sort><creationdate>20220701</creationdate><title>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</title><author>Ge, Yu ; Kaltiokallio, Ossi ; Kim, Hyowon ; Jiang, Fan ; Talvitie, Jukka ; Valkama, Mikko ; Svensson, Lennart ; Kim, Sunwoo ; Wymeersch, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ed948a08de03c91873fd75533c3dcef5596ecf7e03e08cac57b718386fa7d1023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bistatic sensing</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computing costs</topic><topic>extended Kalman filter</topic><topic>Filtering algorithms</topic><topic>Kalman filters</topic><topic>Millimeter waves</topic><topic>mmWave sensing</topic><topic>Poisson multi-Bernoulli mixture filter</topic><topic>Propagation</topic><topic>Receivers</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>State estimation</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yu</creatorcontrib><creatorcontrib>Kaltiokallio, Ossi</creatorcontrib><creatorcontrib>Kim, Hyowon</creatorcontrib><creatorcontrib>Jiang, Fan</creatorcontrib><creatorcontrib>Talvitie, Jukka</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Svensson, Lennart</creatorcontrib><creatorcontrib>Kim, Sunwoo</creatorcontrib><creatorcontrib>Wymeersch, Henk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Högskolan i Halmstad full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Högskolan i Halmstad</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge, Yu</au><au>Kaltiokallio, Ossi</au><au>Kim, Hyowon</au><au>Jiang, Fan</au><au>Talvitie, Jukka</au><au>Valkama, Mikko</au><au>Svensson, Lennart</au><au>Kim, Sunwoo</au><au>Wymeersch, Henk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>40</volume><issue>7</issue><spage>2179</spage><epage>2192</epage><pages>2179-2192</pages><issn>0733-8716</issn><issn>1558-0008</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2022.3155504</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0598-0178</orcidid><orcidid>https://orcid.org/0000-0003-1747-2664</orcidid><orcidid>https://orcid.org/0000-0002-0473-1471</orcidid><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0001-7685-7666</orcidid><orcidid>https://orcid.org/0000-0002-7055-6587</orcidid><orcidid>https://orcid.org/0000-0003-0206-9186</orcidid><orcidid>https://orcid.org/0000-0002-1298-6159</orcidid><orcidid>https://orcid.org/0000-0002-9336-7703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2022-07, Vol.40 (7), p.2179-2192
issn 0733-8716
1558-0008
1558-0008
language eng
recordid cdi_crossref_primary_10_1109_JSAC_2022_3155504
source IEEE Electronic Library (IEL)
subjects Algorithms
Bistatic sensing
Complexity
Complexity theory
Computational efficiency
Computational modeling
Computing costs
extended Kalman filter
Filtering algorithms
Kalman filters
Millimeter waves
mmWave sensing
Poisson multi-Bernoulli mixture filter
Propagation
Receivers
Sensors
Simultaneous localization and mapping
State estimation
Taylor series
title A Computationally Efficient EK-PMBM Filter for Bistatic mmWave Radio SLAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computationally%20Efficient%20EK-PMBM%20Filter%20for%20Bistatic%20mmWave%20Radio%20SLAM&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Ge,%20Yu&rft.date=2022-07-01&rft.volume=40&rft.issue=7&rft.spage=2179&rft.epage=2192&rft.pages=2179-2192&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2022.3155504&rft_dat=%3Cproquest_RIE%3E2677852725%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677852725&rft_id=info:pmid/&rft_ieee_id=9724223&rfr_iscdi=true