Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power

Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2014-02, Vol.32 (2), p.322-332
Hauptverfasser: Xu, Jie, Zhang, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 2
container_start_page 322
container_title IEEE journal on selected areas in communications
container_volume 32
creator Xu, Jie
Zhang, Rui
description Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in general corresponds to a two-phase transmission: the first phase with an EE-maximizing on-off power allocation, and the second phase with a SE-maximizing power allocation that is non-decreasing over time, thus revealing an interesting result that both the EE and SE optimizations are unified in an energy harvesting communication system. We then extend the optimal off-line algorithm to the case with multiple parallel AWGN channels, based on the principle of nested optimization. Finally, inspired by the off-line optimal solution, we propose a new online algorithm under the practical setup with only the past and present energy state information (ESI) known at the transmitter.
doi_str_mv 10.1109/JSAC.2014.141212
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2014_141212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514948</ieee_id><sourcerecordid>1520933688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-84e66d8eb5f0aa8c963e94783a295ba84ae3a01695feb96a86ca764db6f6ad4d3</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRsFbvgpcFL15S9zu7x1KqrYgVrHgM22TSbkmTuptY-u_dUvHgxdNcnvdlZh6ErikZUErM_dPbcDRghIoBFZRRdoJ6VEqdEEL0KeqRlPNEp1Sdo4sQ1iSCQrMeKuYr33TL1bZr8Wzbuo2t8GtTudxBwGXj8bgGv9zjifVfEFpXL_GH81BBCHjubR02rm3BB7xz7Qq_NHUyLSB2jJzPO9fGrh34S3RW2irA1c_so_eH8Xw0SZ5nj9PR8DnJuUzbRAtQqtCwkCWxVudGcTAi1dwyIxdWCwvcEqqMLGFhlNUqt6kSxUKVyhai4H10d-zd-uazi-tmGxdyqCpbQ9OFjCrBWMpSwf5HJSOGc6V1RG__oOum83U8JFJESCmESSNFjlTumxA8lNnWx2_6fUZJdjCUHQxlB0PZ0VCM3BwjDgB-cSWpMELzb9dajMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504554497</pqid></control><display><type>article</type><title>Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Jie ; Zhang, Rui</creator><creatorcontrib>Xu, Jie ; Zhang, Rui</creatorcontrib><description>Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in general corresponds to a two-phase transmission: the first phase with an EE-maximizing on-off power allocation, and the second phase with a SE-maximizing power allocation that is non-decreasing over time, thus revealing an interesting result that both the EE and SE optimizations are unified in an energy harvesting communication system. We then extend the optimal off-line algorithm to the case with multiple parallel AWGN channels, based on the principle of nested optimization. Finally, inspired by the off-line optimal solution, we propose a new online algorithm under the practical setup with only the past and present energy state information (ESI) known at the transmitter.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2014.141212</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Allocations ; AWGN channels ; Channels ; circuit power ; Circuits ; energy efficiency ; Energy harvesting ; Energy transmission ; Harvesting ; Optimization ; power control ; Resource management ; spectrum efficiency ; Throughput ; Transmitters ; Wireless communication ; Wireless communications</subject><ispartof>IEEE journal on selected areas in communications, 2014-02, Vol.32 (2), p.322-332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-84e66d8eb5f0aa8c963e94783a295ba84ae3a01695feb96a86ca764db6f6ad4d3</citedby><cites>FETCH-LOGICAL-c357t-84e66d8eb5f0aa8c963e94783a295ba84ae3a01695feb96a86ca764db6f6ad4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in general corresponds to a two-phase transmission: the first phase with an EE-maximizing on-off power allocation, and the second phase with a SE-maximizing power allocation that is non-decreasing over time, thus revealing an interesting result that both the EE and SE optimizations are unified in an energy harvesting communication system. We then extend the optimal off-line algorithm to the case with multiple parallel AWGN channels, based on the principle of nested optimization. Finally, inspired by the off-line optimal solution, we propose a new online algorithm under the practical setup with only the past and present energy state information (ESI) known at the transmitter.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>AWGN channels</subject><subject>Channels</subject><subject>circuit power</subject><subject>Circuits</subject><subject>energy efficiency</subject><subject>Energy harvesting</subject><subject>Energy transmission</subject><subject>Harvesting</subject><subject>Optimization</subject><subject>power control</subject><subject>Resource management</subject><subject>spectrum efficiency</subject><subject>Throughput</subject><subject>Transmitters</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1Lw0AQhhdRsFbvgpcFL15S9zu7x1KqrYgVrHgM22TSbkmTuptY-u_dUvHgxdNcnvdlZh6ErikZUErM_dPbcDRghIoBFZRRdoJ6VEqdEEL0KeqRlPNEp1Sdo4sQ1iSCQrMeKuYr33TL1bZr8Wzbuo2t8GtTudxBwGXj8bgGv9zjifVfEFpXL_GH81BBCHjubR02rm3BB7xz7Qq_NHUyLSB2jJzPO9fGrh34S3RW2irA1c_so_eH8Xw0SZ5nj9PR8DnJuUzbRAtQqtCwkCWxVudGcTAi1dwyIxdWCwvcEqqMLGFhlNUqt6kSxUKVyhai4H10d-zd-uazi-tmGxdyqCpbQ9OFjCrBWMpSwf5HJSOGc6V1RG__oOum83U8JFJESCmESSNFjlTumxA8lNnWx2_6fUZJdjCUHQxlB0PZ0VCM3BwjDgB-cSWpMELzb9dajMk</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Xu, Jie</creator><creator>Zhang, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201402</creationdate><title>Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power</title><author>Xu, Jie ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-84e66d8eb5f0aa8c963e94783a295ba84ae3a01695feb96a86ca764db6f6ad4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>AWGN channels</topic><topic>Channels</topic><topic>circuit power</topic><topic>Circuits</topic><topic>energy efficiency</topic><topic>Energy harvesting</topic><topic>Energy transmission</topic><topic>Harvesting</topic><topic>Optimization</topic><topic>power control</topic><topic>Resource management</topic><topic>spectrum efficiency</topic><topic>Throughput</topic><topic>Transmitters</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Jie</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2014-02</date><risdate>2014</risdate><volume>32</volume><issue>2</issue><spage>322</spage><epage>332</epage><pages>322-332</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in general corresponds to a two-phase transmission: the first phase with an EE-maximizing on-off power allocation, and the second phase with a SE-maximizing power allocation that is non-decreasing over time, thus revealing an interesting result that both the EE and SE optimizations are unified in an energy harvesting communication system. We then extend the optimal off-line algorithm to the case with multiple parallel AWGN channels, based on the principle of nested optimization. Finally, inspired by the off-line optimal solution, we propose a new online algorithm under the practical setup with only the past and present energy state information (ESI) known at the transmitter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2014.141212</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2014-02, Vol.32 (2), p.322-332
issn 0733-8716
1558-0008
language eng
recordid cdi_crossref_primary_10_1109_JSAC_2014_141212
source IEEE Electronic Library (IEL)
subjects Algorithms
Allocations
AWGN channels
Channels
circuit power
Circuits
energy efficiency
Energy harvesting
Energy transmission
Harvesting
Optimization
power control
Resource management
spectrum efficiency
Throughput
Transmitters
Wireless communication
Wireless communications
title Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20Optimal%20Policies%20for%20Energy%20Harvesting%20Wireless%20Transmitters%20with%20Non-Ideal%20Circuit%20Power&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Xu,%20Jie&rft.date=2014-02&rft.volume=32&rft.issue=2&rft.spage=322&rft.epage=332&rft.pages=322-332&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2014.141212&rft_dat=%3Cproquest_RIE%3E1520933688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504554497&rft_id=info:pmid/&rft_ieee_id=6514948&rfr_iscdi=true