Primary User Traffic Classification in Dynamic Spectrum Access Networks

This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2014-11, Vol.32 (11), p.2237-2251
Hauptverfasser: Chun-Hao Liu, Pawelczak, Przemyslaw, Cabric, Danijela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2251
container_issue 11
container_start_page 2237
container_title IEEE journal on selected areas in communications
container_volume 32
creator Chun-Hao Liu
Pawelczak, Przemyslaw
Cabric, Danijela
description This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.
doi_str_mv 10.1109/JSAC.2014.141122
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2014_141122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6985748</ieee_id><sourcerecordid>3532148501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_d5jiVqVokLb87LZ7kJqk9TdFOm_NyHiaQbmeWeYB6FbwDMArB_eVvNiRjCwGTAAQs7QBDhXOcZYnaMJlpTmSoK4RFcp7XAPMkUmaPEZq9rGU7ZJPmbraEOoXFbsbUpV39muapusarLHU2PrfrI6eNfFY53NnfMpZe---2njV7pGF8Huk7_5q1O0eX5aFy_58mPxWsyXuaNadzlwWxK_xZYM9y2WduuE5xSkCmIbgGvhlXUuOGlD6aCUVpeEBwFMs1ILOkX3495DbL-PPnVm1x5j0580IKhinGnBewqPlIttStEHcxjfNIDNoMsMusygy4y6-sjdGKm89_-40IpLpugvWLNmRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638454965</pqid></control><display><type>article</type><title>Primary User Traffic Classification in Dynamic Spectrum Access Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chun-Hao Liu ; Pawelczak, Przemyslaw ; Cabric, Danijela</creator><creatorcontrib>Chun-Hao Liu ; Pawelczak, Przemyslaw ; Cabric, Danijela</creatorcontrib><description>This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2014.141122</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Dynamic spectrum access ; Economic models ; Estimation error ; Hypotheses ; Noise measurement ; Parameter estimation ; performance analysis ; Probability density function ; Random variables ; Sensors ; Statistical analysis ; traffic classification ; traffic estimation ; traffic sampling</subject><ispartof>IEEE journal on selected areas in communications, 2014-11, Vol.32 (11), p.2237-2251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</citedby><cites>FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6985748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6985748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chun-Hao Liu</creatorcontrib><creatorcontrib>Pawelczak, Przemyslaw</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><title>Primary User Traffic Classification in Dynamic Spectrum Access Networks</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.</description><subject>Analytical models</subject><subject>Dynamic spectrum access</subject><subject>Economic models</subject><subject>Estimation error</subject><subject>Hypotheses</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>performance analysis</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>traffic classification</subject><subject>traffic estimation</subject><subject>traffic sampling</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_d5jiVqVokLb87LZ7kJqk9TdFOm_NyHiaQbmeWeYB6FbwDMArB_eVvNiRjCwGTAAQs7QBDhXOcZYnaMJlpTmSoK4RFcp7XAPMkUmaPEZq9rGU7ZJPmbraEOoXFbsbUpV39muapusarLHU2PrfrI6eNfFY53NnfMpZe---2njV7pGF8Huk7_5q1O0eX5aFy_58mPxWsyXuaNadzlwWxK_xZYM9y2WduuE5xSkCmIbgGvhlXUuOGlD6aCUVpeEBwFMs1ILOkX3495DbL-PPnVm1x5j0580IKhinGnBewqPlIttStEHcxjfNIDNoMsMusygy4y6-sjdGKm89_-40IpLpugvWLNmRA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Chun-Hao Liu</creator><creator>Pawelczak, Przemyslaw</creator><creator>Cabric, Danijela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201411</creationdate><title>Primary User Traffic Classification in Dynamic Spectrum Access Networks</title><author>Chun-Hao Liu ; Pawelczak, Przemyslaw ; Cabric, Danijela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical models</topic><topic>Dynamic spectrum access</topic><topic>Economic models</topic><topic>Estimation error</topic><topic>Hypotheses</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>performance analysis</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>traffic classification</topic><topic>traffic estimation</topic><topic>traffic sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun-Hao Liu</creatorcontrib><creatorcontrib>Pawelczak, Przemyslaw</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chun-Hao Liu</au><au>Pawelczak, Przemyslaw</au><au>Cabric, Danijela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary User Traffic Classification in Dynamic Spectrum Access Networks</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2014-11</date><risdate>2014</risdate><volume>32</volume><issue>11</issue><spage>2237</spage><epage>2251</epage><pages>2237-2251</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2014.141122</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2014-11, Vol.32 (11), p.2237-2251
issn 0733-8716
1558-0008
language eng
recordid cdi_crossref_primary_10_1109_JSAC_2014_141122
source IEEE Electronic Library (IEL)
subjects Analytical models
Dynamic spectrum access
Economic models
Estimation error
Hypotheses
Noise measurement
Parameter estimation
performance analysis
Probability density function
Random variables
Sensors
Statistical analysis
traffic classification
traffic estimation
traffic sampling
title Primary User Traffic Classification in Dynamic Spectrum Access Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20User%20Traffic%20Classification%20in%20Dynamic%20Spectrum%20Access%20Networks&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Chun-Hao%20Liu&rft.date=2014-11&rft.volume=32&rft.issue=11&rft.spage=2237&rft.epage=2251&rft.pages=2237-2251&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2014.141122&rft_dat=%3Cproquest_RIE%3E3532148501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638454965&rft_id=info:pmid/&rft_ieee_id=6985748&rfr_iscdi=true