Primary User Traffic Classification in Dynamic Spectrum Access Networks
This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered h...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2014-11, Vol.32 (11), p.2237-2251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2251 |
---|---|
container_issue | 11 |
container_start_page | 2237 |
container_title | IEEE journal on selected areas in communications |
container_volume | 32 |
creator | Chun-Hao Liu Pawelczak, Przemyslaw Cabric, Danijela |
description | This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large. |
doi_str_mv | 10.1109/JSAC.2014.141122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSAC_2014_141122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6985748</ieee_id><sourcerecordid>3532148501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_d5jiVqVokLb87LZ7kJqk9TdFOm_NyHiaQbmeWeYB6FbwDMArB_eVvNiRjCwGTAAQs7QBDhXOcZYnaMJlpTmSoK4RFcp7XAPMkUmaPEZq9rGU7ZJPmbraEOoXFbsbUpV39muapusarLHU2PrfrI6eNfFY53NnfMpZe---2njV7pGF8Huk7_5q1O0eX5aFy_58mPxWsyXuaNadzlwWxK_xZYM9y2WduuE5xSkCmIbgGvhlXUuOGlD6aCUVpeEBwFMs1ILOkX3495DbL-PPnVm1x5j0580IKhinGnBewqPlIttStEHcxjfNIDNoMsMusygy4y6-sjdGKm89_-40IpLpugvWLNmRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638454965</pqid></control><display><type>article</type><title>Primary User Traffic Classification in Dynamic Spectrum Access Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chun-Hao Liu ; Pawelczak, Przemyslaw ; Cabric, Danijela</creator><creatorcontrib>Chun-Hao Liu ; Pawelczak, Przemyslaw ; Cabric, Danijela</creatorcontrib><description>This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2014.141122</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Dynamic spectrum access ; Economic models ; Estimation error ; Hypotheses ; Noise measurement ; Parameter estimation ; performance analysis ; Probability density function ; Random variables ; Sensors ; Statistical analysis ; traffic classification ; traffic estimation ; traffic sampling</subject><ispartof>IEEE journal on selected areas in communications, 2014-11, Vol.32 (11), p.2237-2251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</citedby><cites>FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6985748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6985748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chun-Hao Liu</creatorcontrib><creatorcontrib>Pawelczak, Przemyslaw</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><title>Primary User Traffic Classification in Dynamic Spectrum Access Networks</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.</description><subject>Analytical models</subject><subject>Dynamic spectrum access</subject><subject>Economic models</subject><subject>Estimation error</subject><subject>Hypotheses</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>performance analysis</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>traffic classification</subject><subject>traffic estimation</subject><subject>traffic sampling</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59Sd_d5jiVqVokLb87LZ7kJqk9TdFOm_NyHiaQbmeWeYB6FbwDMArB_eVvNiRjCwGTAAQs7QBDhXOcZYnaMJlpTmSoK4RFcp7XAPMkUmaPEZq9rGU7ZJPmbraEOoXFbsbUpV39muapusarLHU2PrfrI6eNfFY53NnfMpZe---2njV7pGF8Huk7_5q1O0eX5aFy_58mPxWsyXuaNadzlwWxK_xZYM9y2WduuE5xSkCmIbgGvhlXUuOGlD6aCUVpeEBwFMs1ILOkX3495DbL-PPnVm1x5j0580IKhinGnBewqPlIttStEHcxjfNIDNoMsMusygy4y6-sjdGKm89_-40IpLpugvWLNmRA</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Chun-Hao Liu</creator><creator>Pawelczak, Przemyslaw</creator><creator>Cabric, Danijela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201411</creationdate><title>Primary User Traffic Classification in Dynamic Spectrum Access Networks</title><author>Chun-Hao Liu ; Pawelczak, Przemyslaw ; Cabric, Danijela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-15ab2ed0a21448a07adc6e53178f6df1596e8accfc7afbc1b7a9b25f61494b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical models</topic><topic>Dynamic spectrum access</topic><topic>Economic models</topic><topic>Estimation error</topic><topic>Hypotheses</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>performance analysis</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>traffic classification</topic><topic>traffic estimation</topic><topic>traffic sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun-Hao Liu</creatorcontrib><creatorcontrib>Pawelczak, Przemyslaw</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chun-Hao Liu</au><au>Pawelczak, Przemyslaw</au><au>Cabric, Danijela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary User Traffic Classification in Dynamic Spectrum Access Networks</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2014-11</date><risdate>2014</risdate><volume>32</volume><issue>11</issue><spage>2237</spage><epage>2251</epage><pages>2237-2251</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>This paper focuses on analytical studies of the primary user (PU) traffic classification problem. colorblack{Observing} that the gamma distribution can represent positively skewed data and exponential distribution (popular in communication networks performance analysis literature) it is considered here as the PU traffic descriptor. We investigate two PU traffic classifiers utilizing perfectly measured PU activity (busy) and inactivity (idle) periods: (i) maximum likelihood classifier (MLC) and (ii) multi-hypothesis sequential probability ratio test classifier (MSPRTC). Then, relaxing the assumption on perfect period measurement, we consider a PU traffic observation through channel sampling. For a special case of negligible probability of PU state change in between two samplings, we propose a minimum variance PU busy/idle period length estimator. Later, relaxing the assumption of the complete knowledge of the parameters of the PU period length distribution, we propose two PU traffic classification schemes: (i) estimate-then-classify (ETC), and (ii) average likelihood function (ALF) classifiers considering time domain fluctuation of the PU traffic parameters. Numerical results show that both MLC and MSPRTC are sensitive to the periods measurement errors when the distance among distribution hypotheses is small, and to the distribution parameter estimation errors when the distance among hypotheses is large. For PU traffic parameters with a partial prior knowledge of the distribution, the ETC outperforms ALF when the distance among hypotheses is small, while the opposite holds when the distance is large.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2014.141122</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2014-11, Vol.32 (11), p.2237-2251 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSAC_2014_141122 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Dynamic spectrum access Economic models Estimation error Hypotheses Noise measurement Parameter estimation performance analysis Probability density function Random variables Sensors Statistical analysis traffic classification traffic estimation traffic sampling |
title | Primary User Traffic Classification in Dynamic Spectrum Access Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20User%20Traffic%20Classification%20in%20Dynamic%20Spectrum%20Access%20Networks&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Chun-Hao%20Liu&rft.date=2014-11&rft.volume=32&rft.issue=11&rft.spage=2237&rft.epage=2251&rft.pages=2237-2251&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2014.141122&rft_dat=%3Cproquest_RIE%3E3532148501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638454965&rft_id=info:pmid/&rft_ieee_id=6985748&rfr_iscdi=true |