A Contribution to the Approximation Problem

A method is outlined whereby a given attenuation curve is approximated by the addition of a finite number of semi-infinite slopes, each of which in turn is closely approximated by the attenuation curve of a Butterworth function. These functions therefore constitute a set of approximation functions f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IRE 1948-07, Vol.36 (7), p.863-869
1. Verfasser: Baum, R.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 7
container_start_page 863
container_title Proceedings of the IRE
container_volume 36
creator Baum, R.F.
description A method is outlined whereby a given attenuation curve is approximated by the addition of a finite number of semi-infinite slopes, each of which in turn is closely approximated by the attenuation curve of a Butterworth function. These functions therefore constitute a set of approximation functions for impedance functions. The set is extended by the addition of Tschebyscheff functions, which seem more appropriate for the approximation of curves with filter properties. The method avoids most of the labor normally involved in the numerical solution of approximation problems and the calculation of impedance zeros and poles. It seems especially suited for cases of rather smooth attenuation curves extending over a wide range of frequency. A short indication is given of how to apply the same method to the approximation of resistance, reactance, and phase functions.
doi_str_mv 10.1109/JRPROC.1948.230933
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JRPROC_1948_230933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1697744</ieee_id><sourcerecordid>10_1109_JRPROC_1948_230933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-e998460a389775ce9256e1f3d8e25894a8c231291a65ce627d6001a104f792a23</originalsourceid><addsrcrecordid>eNpFj11Lw0AQRRdRMFb_gL7kXVJndjabnccQ_KTQUvR52aYbjLTdsImg_97UCD5dmMsZ7hHiGmGOCHz3sl6tl9UcWZm5JGCiE5FI1DLTmtSpSABYZ4YYzsVF338AEOZkEnFbplU4DLHdfA5tOKRDSId3n5ZdF8NXu3e_x1UMm53fX4qzxu16f_WXM_H2cP9aPWWL5eNzVS6yWupiyDyzURocGS6KvPYsc-2xoa3xMjesnKkloWR0emy1LLYaAB2CagqWTtJMyOlvHUPfR9_YLo5T4rdFsEddO-nao66ddEfoZoJa7_0_oMcNStEPUANPsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Contribution to the Approximation Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Baum, R.F.</creator><creatorcontrib>Baum, R.F.</creatorcontrib><description>A method is outlined whereby a given attenuation curve is approximated by the addition of a finite number of semi-infinite slopes, each of which in turn is closely approximated by the attenuation curve of a Butterworth function. These functions therefore constitute a set of approximation functions for impedance functions. The set is extended by the addition of Tschebyscheff functions, which seem more appropriate for the approximation of curves with filter properties. The method avoids most of the labor normally involved in the numerical solution of approximation problems and the calculation of impedance zeros and poles. It seems especially suited for cases of rather smooth attenuation curves extending over a wide range of frequency. A short indication is given of how to apply the same method to the approximation of resistance, reactance, and phase functions.</description><identifier>ISSN: 0096-8390</identifier><identifier>EISSN: 2162-6634</identifier><identifier>DOI: 10.1109/JRPROC.1948.230933</identifier><language>eng</language><publisher>IEEE</publisher><subject>Admittance ; Attenuation ; Capacitance ; Equations ; Filters ; Frequency ; Genetic expression ; Impedance ; Manufacturing ; Poles and zeros</subject><ispartof>Proceedings of the IRE, 1948-07, Vol.36 (7), p.863-869</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-e998460a389775ce9256e1f3d8e25894a8c231291a65ce627d6001a104f792a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1697744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1697744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baum, R.F.</creatorcontrib><title>A Contribution to the Approximation Problem</title><title>Proceedings of the IRE</title><addtitle>PROC</addtitle><description>A method is outlined whereby a given attenuation curve is approximated by the addition of a finite number of semi-infinite slopes, each of which in turn is closely approximated by the attenuation curve of a Butterworth function. These functions therefore constitute a set of approximation functions for impedance functions. The set is extended by the addition of Tschebyscheff functions, which seem more appropriate for the approximation of curves with filter properties. The method avoids most of the labor normally involved in the numerical solution of approximation problems and the calculation of impedance zeros and poles. It seems especially suited for cases of rather smooth attenuation curves extending over a wide range of frequency. A short indication is given of how to apply the same method to the approximation of resistance, reactance, and phase functions.</description><subject>Admittance</subject><subject>Attenuation</subject><subject>Capacitance</subject><subject>Equations</subject><subject>Filters</subject><subject>Frequency</subject><subject>Genetic expression</subject><subject>Impedance</subject><subject>Manufacturing</subject><subject>Poles and zeros</subject><issn>0096-8390</issn><issn>2162-6634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1948</creationdate><recordtype>article</recordtype><recordid>eNpFj11Lw0AQRRdRMFb_gL7kXVJndjabnccQ_KTQUvR52aYbjLTdsImg_97UCD5dmMsZ7hHiGmGOCHz3sl6tl9UcWZm5JGCiE5FI1DLTmtSpSABYZ4YYzsVF338AEOZkEnFbplU4DLHdfA5tOKRDSId3n5ZdF8NXu3e_x1UMm53fX4qzxu16f_WXM_H2cP9aPWWL5eNzVS6yWupiyDyzURocGS6KvPYsc-2xoa3xMjesnKkloWR0emy1LLYaAB2CagqWTtJMyOlvHUPfR9_YLo5T4rdFsEddO-nao66ddEfoZoJa7_0_oMcNStEPUANPsA</recordid><startdate>194807</startdate><enddate>194807</enddate><creator>Baum, R.F.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>194807</creationdate><title>A Contribution to the Approximation Problem</title><author>Baum, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-e998460a389775ce9256e1f3d8e25894a8c231291a65ce627d6001a104f792a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1948</creationdate><topic>Admittance</topic><topic>Attenuation</topic><topic>Capacitance</topic><topic>Equations</topic><topic>Filters</topic><topic>Frequency</topic><topic>Genetic expression</topic><topic>Impedance</topic><topic>Manufacturing</topic><topic>Poles and zeros</topic><toplevel>online_resources</toplevel><creatorcontrib>Baum, R.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the IRE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baum, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Contribution to the Approximation Problem</atitle><jtitle>Proceedings of the IRE</jtitle><stitle>PROC</stitle><date>1948-07</date><risdate>1948</risdate><volume>36</volume><issue>7</issue><spage>863</spage><epage>869</epage><pages>863-869</pages><issn>0096-8390</issn><eissn>2162-6634</eissn><abstract>A method is outlined whereby a given attenuation curve is approximated by the addition of a finite number of semi-infinite slopes, each of which in turn is closely approximated by the attenuation curve of a Butterworth function. These functions therefore constitute a set of approximation functions for impedance functions. The set is extended by the addition of Tschebyscheff functions, which seem more appropriate for the approximation of curves with filter properties. The method avoids most of the labor normally involved in the numerical solution of approximation problems and the calculation of impedance zeros and poles. It seems especially suited for cases of rather smooth attenuation curves extending over a wide range of frequency. A short indication is given of how to apply the same method to the approximation of resistance, reactance, and phase functions.</abstract><pub>IEEE</pub><doi>10.1109/JRPROC.1948.230933</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0096-8390
ispartof Proceedings of the IRE, 1948-07, Vol.36 (7), p.863-869
issn 0096-8390
2162-6634
language eng
recordid cdi_crossref_primary_10_1109_JRPROC_1948_230933
source IEEE Electronic Library (IEL)
subjects Admittance
Attenuation
Capacitance
Equations
Filters
Frequency
Genetic expression
Impedance
Manufacturing
Poles and zeros
title A Contribution to the Approximation Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Contribution%20to%20the%20Approximation%20Problem&rft.jtitle=Proceedings%20of%20the%20IRE&rft.au=Baum,%20R.F.&rft.date=1948-07&rft.volume=36&rft.issue=7&rft.spage=863&rft.epage=869&rft.pages=863-869&rft.issn=0096-8390&rft.eissn=2162-6634&rft_id=info:doi/10.1109/JRPROC.1948.230933&rft_dat=%3Ccrossref_RIE%3E10_1109_JRPROC_1948_230933%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1697744&rfr_iscdi=true