Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies

This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of radio frequency identification (Online) 2024, Vol.8, p.780-787
Hauptverfasser: Dai, Xingyuan, Tang, Yiqing, Chen, Yuanyuan, Zhang, Xiqiao, Lv, Yisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel Digital Traffic Engineers (DTEs) framework, leveraging Large Language Models (LLMs) to intelligently interpret human language and automate the creation of traffic control strategies. This advancement eliminates the need for manual scheme creation, reducing the workload of human traffic engineers (HTEs) and significantly improving the efficiency from requirement to control scheme generation. Experimental results in scenario understanding and traffic control underscore the potential of DTEs to effectively perform tasks traditionally managed by HTEs. This synergy between HTEs and DTEs not only streamlines traffic management processes but also paves the way for more adaptive, responsive, and environmentally friendly urban transportation solutions.
ISSN:2469-7281
2469-729X
DOI:10.1109/JRFID.2024.3452473