Receptive Field-Based All-Optical Spiking Neural Network for Image Processing
We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2024-02, Vol.60 (1), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE journal of quantum electronics |
container_volume | 60 |
creator | Chen, Taiyi Huang, Yu Zhou, Pei Mu, Penghua Xiang, Shuiying Chizhevsky, V. N. Li, Nianqiang |
description | We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing. |
doi_str_mv | 10.1109/JQE.2023.3325227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JQE_2023_3325227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10288163</ieee_id><sourcerecordid>2892374581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-dbddb9eadf64018c58051e2a172174deab66df957cd40dd24e81138b64c80ae3</originalsourceid><addsrcrecordid>eNpNkMtPwkAQhzdGExG9e_DQxHNxZx_t9ogEFIPgg3uz3Z2SQqF1t2j8710CB0-T3-SbRz5CboEOAGj28PI-HjDK-IBzJhlLz0gPpFQxpMDPSY9SUHEGWXpJrrxfhyiEoj3y-oEG2676xmhSYW3jR-3RRsO6jhehbXQdfbbVptqtojnuXYhz7H4at4nKxkXTrV5h9OYag94H5ppclLr2eHOqfbKcjJej53i2eJqOhrPYMCG72BbWFhlqWyYi_GWkohKQaUgZpMKiLpLElplMjRXUWiZQAXBVJMIoqpH3yf1xbeuarz36Ll83e7cLF3OmMsZTIRUEih4p4xrvHZZ566qtdr850PzgLA_O8oOz_OQsjNwdRypE_IczpSDh_A90wmd1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892374581</pqid></control><display><type>article</type><title>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Taiyi ; Huang, Yu ; Zhou, Pei ; Mu, Penghua ; Xiang, Shuiying ; Chizhevsky, V. N. ; Li, Nianqiang</creator><creatorcontrib>Chen, Taiyi ; Huang, Yu ; Zhou, Pei ; Mu, Penghua ; Xiang, Shuiying ; Chizhevsky, V. N. ; Li, Nianqiang</creatorcontrib><description>We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2023.3325227</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical optical imaging ; Color imagery ; Complexity ; excitable lasers ; Image processing ; Image segmentation ; Laser excitation ; Machine vision ; Multilayers ; Neural networks ; neuromorphic photonics ; Neuromorphics ; Neurons ; Optical imaging ; photonic neural networks ; Photonic spiking neural networks ; Photonics ; receptive field (RF) ; spike-timing-dependent plasticity (STDP) ; Spiking ; Spiking neural networks ; Time multiplexing ; time-to-first-spike (TTFS)</subject><ispartof>IEEE journal of quantum electronics, 2024-02, Vol.60 (1), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-dbddb9eadf64018c58051e2a172174deab66df957cd40dd24e81138b64c80ae3</cites><orcidid>0000-0001-5984-4230 ; 0000-0002-1698-2083 ; 0000-0001-7570-9098 ; 0000-0002-3869-1332 ; 0000-0002-0068-3716 ; 0000-0002-6288-3908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10288163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10288163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Taiyi</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhou, Pei</creatorcontrib><creatorcontrib>Mu, Penghua</creatorcontrib><creatorcontrib>Xiang, Shuiying</creatorcontrib><creatorcontrib>Chizhevsky, V. N.</creatorcontrib><creatorcontrib>Li, Nianqiang</creatorcontrib><title>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.</description><subject>Biomedical optical imaging</subject><subject>Color imagery</subject><subject>Complexity</subject><subject>excitable lasers</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Laser excitation</subject><subject>Machine vision</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>neuromorphic photonics</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Optical imaging</subject><subject>photonic neural networks</subject><subject>Photonic spiking neural networks</subject><subject>Photonics</subject><subject>receptive field (RF)</subject><subject>spike-timing-dependent plasticity (STDP)</subject><subject>Spiking</subject><subject>Spiking neural networks</subject><subject>Time multiplexing</subject><subject>time-to-first-spike (TTFS)</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtPwkAQhzdGExG9e_DQxHNxZx_t9ogEFIPgg3uz3Z2SQqF1t2j8710CB0-T3-SbRz5CboEOAGj28PI-HjDK-IBzJhlLz0gPpFQxpMDPSY9SUHEGWXpJrrxfhyiEoj3y-oEG2676xmhSYW3jR-3RRsO6jhehbXQdfbbVptqtojnuXYhz7H4at4nKxkXTrV5h9OYag94H5ppclLr2eHOqfbKcjJej53i2eJqOhrPYMCG72BbWFhlqWyYi_GWkohKQaUgZpMKiLpLElplMjRXUWiZQAXBVJMIoqpH3yf1xbeuarz36Ll83e7cLF3OmMsZTIRUEih4p4xrvHZZ566qtdr850PzgLA_O8oOz_OQsjNwdRypE_IczpSDh_A90wmd1</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Chen, Taiyi</creator><creator>Huang, Yu</creator><creator>Zhou, Pei</creator><creator>Mu, Penghua</creator><creator>Xiang, Shuiying</creator><creator>Chizhevsky, V. N.</creator><creator>Li, Nianqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5984-4230</orcidid><orcidid>https://orcid.org/0000-0002-1698-2083</orcidid><orcidid>https://orcid.org/0000-0001-7570-9098</orcidid><orcidid>https://orcid.org/0000-0002-3869-1332</orcidid><orcidid>https://orcid.org/0000-0002-0068-3716</orcidid><orcidid>https://orcid.org/0000-0002-6288-3908</orcidid></search><sort><creationdate>20240201</creationdate><title>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</title><author>Chen, Taiyi ; Huang, Yu ; Zhou, Pei ; Mu, Penghua ; Xiang, Shuiying ; Chizhevsky, V. N. ; Li, Nianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-dbddb9eadf64018c58051e2a172174deab66df957cd40dd24e81138b64c80ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical optical imaging</topic><topic>Color imagery</topic><topic>Complexity</topic><topic>excitable lasers</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Laser excitation</topic><topic>Machine vision</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>neuromorphic photonics</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Optical imaging</topic><topic>photonic neural networks</topic><topic>Photonic spiking neural networks</topic><topic>Photonics</topic><topic>receptive field (RF)</topic><topic>spike-timing-dependent plasticity (STDP)</topic><topic>Spiking</topic><topic>Spiking neural networks</topic><topic>Time multiplexing</topic><topic>time-to-first-spike (TTFS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Taiyi</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhou, Pei</creatorcontrib><creatorcontrib>Mu, Penghua</creatorcontrib><creatorcontrib>Xiang, Shuiying</creatorcontrib><creatorcontrib>Chizhevsky, V. N.</creatorcontrib><creatorcontrib>Li, Nianqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Taiyi</au><au>Huang, Yu</au><au>Zhou, Pei</au><au>Mu, Penghua</au><au>Xiang, Shuiying</au><au>Chizhevsky, V. N.</au><au>Li, Nianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JQE.2023.3325227</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5984-4230</orcidid><orcidid>https://orcid.org/0000-0002-1698-2083</orcidid><orcidid>https://orcid.org/0000-0001-7570-9098</orcidid><orcidid>https://orcid.org/0000-0002-3869-1332</orcidid><orcidid>https://orcid.org/0000-0002-0068-3716</orcidid><orcidid>https://orcid.org/0000-0002-6288-3908</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2024-02, Vol.60 (1), p.1-11 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JQE_2023_3325227 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical optical imaging Color imagery Complexity excitable lasers Image processing Image segmentation Laser excitation Machine vision Multilayers Neural networks neuromorphic photonics Neuromorphics Neurons Optical imaging photonic neural networks Photonic spiking neural networks Photonics receptive field (RF) spike-timing-dependent plasticity (STDP) Spiking Spiking neural networks Time multiplexing time-to-first-spike (TTFS) |
title | Receptive Field-Based All-Optical Spiking Neural Network for Image Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Receptive%20Field-Based%20All-Optical%20Spiking%20Neural%20Network%20for%20Image%20Processing&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Chen,%20Taiyi&rft.date=2024-02-01&rft.volume=60&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2023.3325227&rft_dat=%3Cproquest_RIE%3E2892374581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892374581&rft_id=info:pmid/&rft_ieee_id=10288163&rfr_iscdi=true |