Receptive Field-Based All-Optical Spiking Neural Network for Image Processing

We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2024-02, Vol.60 (1), p.1-11
Hauptverfasser: Chen, Taiyi, Huang, Yu, Zhou, Pei, Mu, Penghua, Xiang, Shuiying, Chizhevsky, V. N., Li, Nianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title IEEE journal of quantum electronics
container_volume 60
creator Chen, Taiyi
Huang, Yu
Zhou, Pei
Mu, Penghua
Xiang, Shuiying
Chizhevsky, V. N.
Li, Nianqiang
description We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.
doi_str_mv 10.1109/JQE.2023.3325227
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JQE_2023_3325227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10288163</ieee_id><sourcerecordid>2892374581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-dbddb9eadf64018c58051e2a172174deab66df957cd40dd24e81138b64c80ae3</originalsourceid><addsrcrecordid>eNpNkMtPwkAQhzdGExG9e_DQxHNxZx_t9ogEFIPgg3uz3Z2SQqF1t2j8710CB0-T3-SbRz5CboEOAGj28PI-HjDK-IBzJhlLz0gPpFQxpMDPSY9SUHEGWXpJrrxfhyiEoj3y-oEG2676xmhSYW3jR-3RRsO6jhehbXQdfbbVptqtojnuXYhz7H4at4nKxkXTrV5h9OYag94H5ppclLr2eHOqfbKcjJej53i2eJqOhrPYMCG72BbWFhlqWyYi_GWkohKQaUgZpMKiLpLElplMjRXUWiZQAXBVJMIoqpH3yf1xbeuarz36Ll83e7cLF3OmMsZTIRUEih4p4xrvHZZ566qtdr850PzgLA_O8oOz_OQsjNwdRypE_IczpSDh_A90wmd1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892374581</pqid></control><display><type>article</type><title>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Taiyi ; Huang, Yu ; Zhou, Pei ; Mu, Penghua ; Xiang, Shuiying ; Chizhevsky, V. N. ; Li, Nianqiang</creator><creatorcontrib>Chen, Taiyi ; Huang, Yu ; Zhou, Pei ; Mu, Penghua ; Xiang, Shuiying ; Chizhevsky, V. N. ; Li, Nianqiang</creatorcontrib><description>We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2023.3325227</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomedical optical imaging ; Color imagery ; Complexity ; excitable lasers ; Image processing ; Image segmentation ; Laser excitation ; Machine vision ; Multilayers ; Neural networks ; neuromorphic photonics ; Neuromorphics ; Neurons ; Optical imaging ; photonic neural networks ; Photonic spiking neural networks ; Photonics ; receptive field (RF) ; spike-timing-dependent plasticity (STDP) ; Spiking ; Spiking neural networks ; Time multiplexing ; time-to-first-spike (TTFS)</subject><ispartof>IEEE journal of quantum electronics, 2024-02, Vol.60 (1), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-dbddb9eadf64018c58051e2a172174deab66df957cd40dd24e81138b64c80ae3</cites><orcidid>0000-0001-5984-4230 ; 0000-0002-1698-2083 ; 0000-0001-7570-9098 ; 0000-0002-3869-1332 ; 0000-0002-0068-3716 ; 0000-0002-6288-3908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10288163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10288163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Taiyi</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhou, Pei</creatorcontrib><creatorcontrib>Mu, Penghua</creatorcontrib><creatorcontrib>Xiang, Shuiying</creatorcontrib><creatorcontrib>Chizhevsky, V. N.</creatorcontrib><creatorcontrib>Li, Nianqiang</creatorcontrib><title>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.</description><subject>Biomedical optical imaging</subject><subject>Color imagery</subject><subject>Complexity</subject><subject>excitable lasers</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Laser excitation</subject><subject>Machine vision</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>neuromorphic photonics</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Optical imaging</subject><subject>photonic neural networks</subject><subject>Photonic spiking neural networks</subject><subject>Photonics</subject><subject>receptive field (RF)</subject><subject>spike-timing-dependent plasticity (STDP)</subject><subject>Spiking</subject><subject>Spiking neural networks</subject><subject>Time multiplexing</subject><subject>time-to-first-spike (TTFS)</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtPwkAQhzdGExG9e_DQxHNxZx_t9ogEFIPgg3uz3Z2SQqF1t2j8710CB0-T3-SbRz5CboEOAGj28PI-HjDK-IBzJhlLz0gPpFQxpMDPSY9SUHEGWXpJrrxfhyiEoj3y-oEG2676xmhSYW3jR-3RRsO6jhehbXQdfbbVptqtojnuXYhz7H4at4nKxkXTrV5h9OYag94H5ppclLr2eHOqfbKcjJej53i2eJqOhrPYMCG72BbWFhlqWyYi_GWkohKQaUgZpMKiLpLElplMjRXUWiZQAXBVJMIoqpH3yf1xbeuarz36Ll83e7cLF3OmMsZTIRUEih4p4xrvHZZ566qtdr850PzgLA_O8oOz_OQsjNwdRypE_IczpSDh_A90wmd1</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Chen, Taiyi</creator><creator>Huang, Yu</creator><creator>Zhou, Pei</creator><creator>Mu, Penghua</creator><creator>Xiang, Shuiying</creator><creator>Chizhevsky, V. N.</creator><creator>Li, Nianqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5984-4230</orcidid><orcidid>https://orcid.org/0000-0002-1698-2083</orcidid><orcidid>https://orcid.org/0000-0001-7570-9098</orcidid><orcidid>https://orcid.org/0000-0002-3869-1332</orcidid><orcidid>https://orcid.org/0000-0002-0068-3716</orcidid><orcidid>https://orcid.org/0000-0002-6288-3908</orcidid></search><sort><creationdate>20240201</creationdate><title>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</title><author>Chen, Taiyi ; Huang, Yu ; Zhou, Pei ; Mu, Penghua ; Xiang, Shuiying ; Chizhevsky, V. N. ; Li, Nianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-dbddb9eadf64018c58051e2a172174deab66df957cd40dd24e81138b64c80ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical optical imaging</topic><topic>Color imagery</topic><topic>Complexity</topic><topic>excitable lasers</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Laser excitation</topic><topic>Machine vision</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>neuromorphic photonics</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Optical imaging</topic><topic>photonic neural networks</topic><topic>Photonic spiking neural networks</topic><topic>Photonics</topic><topic>receptive field (RF)</topic><topic>spike-timing-dependent plasticity (STDP)</topic><topic>Spiking</topic><topic>Spiking neural networks</topic><topic>Time multiplexing</topic><topic>time-to-first-spike (TTFS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Taiyi</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhou, Pei</creatorcontrib><creatorcontrib>Mu, Penghua</creatorcontrib><creatorcontrib>Xiang, Shuiying</creatorcontrib><creatorcontrib>Chizhevsky, V. N.</creatorcontrib><creatorcontrib>Li, Nianqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Taiyi</au><au>Huang, Yu</au><au>Zhou, Pei</au><au>Mu, Penghua</au><au>Xiang, Shuiying</au><au>Chizhevsky, V. N.</au><au>Li, Nianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Receptive Field-Based All-Optical Spiking Neural Network for Image Processing</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We report on a novel structure of a receptive field (RF)-based multi-layer all-optical neural network using a micropillar laser with a saturable absorber (SA) for image processing. From the perspective of biological vision, the realization of image processing based on the RF provides the biological rationality for the machine vision implemented by the spiking neural network (SNN). By exploiting the fast physical mechanisms of gain and absorption in the SA laser, the photonic spike-timing-dependent plasticity (STDP) curves are achieved to train the weights. Here, the source image pixels are mapped into the temporal information of spike trains injected into the neural network through the temporal coding method called time-to-first-spike encoding. Different source images are processed and tested by the proposed photonic SNN. Simulation results show that our proposed system can process not only simple binary images but also complex color images under the adjustment of STDP rules. When considering the robustness, we demonstrate the tolerance of the image segmentation to the time jitter. These results indicate that our proposed photonic SNN can achieve high-resolution processing of complex source images. Additionally, the time-multiplexing technique can be further adopted to simplify the RF structure, which is expected to reduce the complexity of the whole system, thus facilitating physical applications. Our work offers the prospect for a high-speed photonic spiking platform for image processing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JQE.2023.3325227</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5984-4230</orcidid><orcidid>https://orcid.org/0000-0002-1698-2083</orcidid><orcidid>https://orcid.org/0000-0001-7570-9098</orcidid><orcidid>https://orcid.org/0000-0002-3869-1332</orcidid><orcidid>https://orcid.org/0000-0002-0068-3716</orcidid><orcidid>https://orcid.org/0000-0002-6288-3908</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2024-02, Vol.60 (1), p.1-11
issn 0018-9197
1558-1713
language eng
recordid cdi_crossref_primary_10_1109_JQE_2023_3325227
source IEEE Electronic Library (IEL)
subjects Biomedical optical imaging
Color imagery
Complexity
excitable lasers
Image processing
Image segmentation
Laser excitation
Machine vision
Multilayers
Neural networks
neuromorphic photonics
Neuromorphics
Neurons
Optical imaging
photonic neural networks
Photonic spiking neural networks
Photonics
receptive field (RF)
spike-timing-dependent plasticity (STDP)
Spiking
Spiking neural networks
Time multiplexing
time-to-first-spike (TTFS)
title Receptive Field-Based All-Optical Spiking Neural Network for Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Receptive%20Field-Based%20All-Optical%20Spiking%20Neural%20Network%20for%20Image%20Processing&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Chen,%20Taiyi&rft.date=2024-02-01&rft.volume=60&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2023.3325227&rft_dat=%3Cproquest_RIE%3E2892374581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892374581&rft_id=info:pmid/&rft_ieee_id=10288163&rfr_iscdi=true