Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method

This paper reports a solution-based method for the application of multiple nanostructures on full surface of GZO/GaN-based LEDs to enhance light-extraction efficiency. Ga-doped ZnO (GZO) was deposited to a thickness of 1μm and an n + -InGaN/GaN short-period superlattice structure was grown to improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2014-08, Vol.50 (8), p.629-632
1. Verfasser: Shei, Shih-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 8
container_start_page 629
container_title IEEE journal of quantum electronics
container_volume 50
creator Shei, Shih-Chang
description This paper reports a solution-based method for the application of multiple nanostructures on full surface of GZO/GaN-based LEDs to enhance light-extraction efficiency. Ga-doped ZnO (GZO) was deposited to a thickness of 1μm and an n + -InGaN/GaN short-period superlattice structure was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. A solution-based method was used to control the density of ZnO nanoparticles deposited on the SiO 2 layer for use as self-assembled etching nanomasks. Multiple nanostructures were simultaneously formed on the surfaces of GZO, p-GaN, and n-GaN by dry etching. The proposed LEDs increase light output power by 10%-27% (at 20 mA) over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in the shape, thickness, and density of GZO and GaN nanostructures, resulting in a reduction in Fresnel reflection provided by the roughened surface of the GaN-based LEDs.
doi_str_mv 10.1109/JQE.2014.2329897
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JQE_2014_2329897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6834744</ieee_id><sourcerecordid>1567099143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-3928f2dd8e61ea6c2e904da5d3d94b8dbb24bbfc16280c716d61a4b9d2574c3f3</originalsourceid><addsrcrecordid>eNpdkUtrFEEURgtRcIzuBTcFbtz0pF5dj6XGzqhMEiRm46aprkemQqdrrAeYpf_cGmZw4epyuef7uHAAeIvRGmOkzr99H9YEYbYmlCipxDOwwn0vOywwfQ5WCGHZKazES_Aq54e2MibRCvy5qnMJ-9nBa73EXFI1pSaXYVzgZZ1neFuT18bB6OHm5835Rl93n3R2Fm6Hz7BEOCw7vbT7NtzvSjf8LkmbElp68D6Y4BbzBO9yWO6hhrdxrofbqeHKlV20r8ELr-fs3pzmGbi7HH5cfOm2N5uvFx-3naGElY4qIj2xVjqOneaGOIWY1b2lVrFJ2mkibJq8wZxIZATmlmPNJmVJL5ihnp6BD8fefYq_qstlfAzZuHnWi4s1j7jnAimFGW3o-__Qh1jT0r5rFONICM5Ro9CRMinmnJwf9yk86vQ0YjQenIzNyXhwMp6ctMi7YyQ45_7hXFImGKN_AYQ8h50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546077660</pqid></control><display><type>article</type><title>Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method</title><source>IEEE Electronic Library (IEL)</source><creator>Shei, Shih-Chang</creator><creatorcontrib>Shei, Shih-Chang</creatorcontrib><description>This paper reports a solution-based method for the application of multiple nanostructures on full surface of GZO/GaN-based LEDs to enhance light-extraction efficiency. Ga-doped ZnO (GZO) was deposited to a thickness of 1μm and an n + -InGaN/GaN short-period superlattice structure was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. A solution-based method was used to control the density of ZnO nanoparticles deposited on the SiO 2 layer for use as self-assembled etching nanomasks. Multiple nanostructures were simultaneously formed on the surfaces of GZO, p-GaN, and n-GaN by dry etching. The proposed LEDs increase light output power by 10%-27% (at 20 mA) over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in the shape, thickness, and density of GZO and GaN nanostructures, resulting in a reduction in Fresnel reflection provided by the roughened surface of the GaN-based LEDs.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2014.2329897</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Density ; Deposition ; Electric power generation ; Etching ; Gallium nitride ; Gallium nitrides ; Light emitting diodes ; Nanostructure ; Nanostructures ; Voltage ; Zinc oxide</subject><ispartof>IEEE journal of quantum electronics, 2014-08, Vol.50 (8), p.629-632</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-3928f2dd8e61ea6c2e904da5d3d94b8dbb24bbfc16280c716d61a4b9d2574c3f3</citedby><cites>FETCH-LOGICAL-c324t-3928f2dd8e61ea6c2e904da5d3d94b8dbb24bbfc16280c716d61a4b9d2574c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6834744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6834744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shei, Shih-Chang</creatorcontrib><title>Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>This paper reports a solution-based method for the application of multiple nanostructures on full surface of GZO/GaN-based LEDs to enhance light-extraction efficiency. Ga-doped ZnO (GZO) was deposited to a thickness of 1μm and an n + -InGaN/GaN short-period superlattice structure was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. A solution-based method was used to control the density of ZnO nanoparticles deposited on the SiO 2 layer for use as self-assembled etching nanomasks. Multiple nanostructures were simultaneously formed on the surfaces of GZO, p-GaN, and n-GaN by dry etching. The proposed LEDs increase light output power by 10%-27% (at 20 mA) over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in the shape, thickness, and density of GZO and GaN nanostructures, resulting in a reduction in Fresnel reflection provided by the roughened surface of the GaN-based LEDs.</description><subject>Density</subject><subject>Deposition</subject><subject>Electric power generation</subject><subject>Etching</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>Light emitting diodes</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Voltage</subject><subject>Zinc oxide</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtrFEEURgtRcIzuBTcFbtz0pF5dj6XGzqhMEiRm46aprkemQqdrrAeYpf_cGmZw4epyuef7uHAAeIvRGmOkzr99H9YEYbYmlCipxDOwwn0vOywwfQ5WCGHZKazES_Aq54e2MibRCvy5qnMJ-9nBa73EXFI1pSaXYVzgZZ1neFuT18bB6OHm5835Rl93n3R2Fm6Hz7BEOCw7vbT7NtzvSjf8LkmbElp68D6Y4BbzBO9yWO6hhrdxrofbqeHKlV20r8ELr-fs3pzmGbi7HH5cfOm2N5uvFx-3naGElY4qIj2xVjqOneaGOIWY1b2lVrFJ2mkibJq8wZxIZATmlmPNJmVJL5ihnp6BD8fefYq_qstlfAzZuHnWi4s1j7jnAimFGW3o-__Qh1jT0r5rFONICM5Ro9CRMinmnJwf9yk86vQ0YjQenIzNyXhwMp6ctMi7YyQ45_7hXFImGKN_AYQ8h50</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Shei, Shih-Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>7SR</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140801</creationdate><title>Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method</title><author>Shei, Shih-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-3928f2dd8e61ea6c2e904da5d3d94b8dbb24bbfc16280c716d61a4b9d2574c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Density</topic><topic>Deposition</topic><topic>Electric power generation</topic><topic>Etching</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>Light emitting diodes</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Voltage</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shei, Shih-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shei, Shih-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>50</volume><issue>8</issue><spage>629</spage><epage>632</epage><pages>629-632</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>This paper reports a solution-based method for the application of multiple nanostructures on full surface of GZO/GaN-based LEDs to enhance light-extraction efficiency. Ga-doped ZnO (GZO) was deposited to a thickness of 1μm and an n + -InGaN/GaN short-period superlattice structure was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. A solution-based method was used to control the density of ZnO nanoparticles deposited on the SiO 2 layer for use as self-assembled etching nanomasks. Multiple nanostructures were simultaneously formed on the surfaces of GZO, p-GaN, and n-GaN by dry etching. The proposed LEDs increase light output power by 10%-27% (at 20 mA) over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in the shape, thickness, and density of GZO and GaN nanostructures, resulting in a reduction in Fresnel reflection provided by the roughened surface of the GaN-based LEDs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JQE.2014.2329897</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2014-08, Vol.50 (8), p.629-632
issn 0018-9197
1558-1713
language eng
recordid cdi_crossref_primary_10_1109_JQE_2014_2329897
source IEEE Electronic Library (IEL)
subjects Density
Deposition
Electric power generation
Etching
Gallium nitride
Gallium nitrides
Light emitting diodes
Nanostructure
Nanostructures
Voltage
Zinc oxide
title Multiple Nanostructures on Full Surface of GZO/GaN-Based LED to Enhance Light-Extraction Efficiency Using a Solution-Based Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Nanostructures%20on%20Full%20Surface%20of%20GZO/GaN-Based%20LED%20to%20Enhance%20Light-Extraction%20Efficiency%20Using%20a%20Solution-Based%20Method&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Shei,%20Shih-Chang&rft.date=2014-08-01&rft.volume=50&rft.issue=8&rft.spage=629&rft.epage=632&rft.pages=629-632&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2014.2329897&rft_dat=%3Cproquest_RIE%3E1567099143%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546077660&rft_id=info:pmid/&rft_ieee_id=6834744&rfr_iscdi=true