Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis

Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this lase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2008-02, Vol.44 (2), p.125-135
Hauptverfasser: Kemp, A.J., Hopkins, J.-M., Maclean, A.J., Schulz, N., Rattunde, M., Wagner, J., Burns, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue 2
container_start_page 125
container_title IEEE journal of quantum electronics
container_volume 44
creator Kemp, A.J.
Hopkins, J.-M.
Maclean, A.J.
Schulz, N.
Rattunde, M.
Wagner, J.
Burns, D.
description Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.
doi_str_mv 10.1109/JQE.2007.911673
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JQE_2007_911673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4418449</ieee_id><sourcerecordid>10_1109_JQE_2007_911673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqUwM7D4BZL6i53YZotKyo-CEKJsSJHrfAFDfpDdDh14d1IFMV1d6Z47HEIugcUATC8enos4YUzGGiCT_IjMIE1VBBL4MZkxBirSoOUpOQvhc6xCKDYj6_UH-s609NH05h077LfU9TSJeUTfut0PfcHO2aGvd3Y7eHrjwhctTUAfrmlOV653W6RFO4F5b9p9cOGcnDSmDXjxl3PyuirWy7uofLq9X-ZlZIFlOhK8EWmmjNCWq0TVLGtqodNEgdUSpLLZRnJRS65qmWxgo43lAjNEaCyTJuVzsph-rR9C8NhU3951xu8rYNVBSjVKqQ5SqknKSFxNhEPE_7UQoITQ_BeSz1vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Kemp, A.J. ; Hopkins, J.-M. ; Maclean, A.J. ; Schulz, N. ; Rattunde, M. ; Wagner, J. ; Burns, D.</creator><creatorcontrib>Kemp, A.J. ; Hopkins, J.-M. ; Maclean, A.J. ; Schulz, N. ; Rattunde, M. ; Wagner, J. ; Burns, D.</creatorcontrib><description>Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2007.911673</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Diode-pumped solid-state lasers ; Energy management ; Finite element methods ; Heat pumps ; Laser excitation ; Power lasers ; semiconductor disk lasers ; Semiconductor lasers ; Substrates ; Surface emitting lasers ; Thermal management ; Vertical cavity surface emitting lasers ; vertical-external-cavity surface-emitting lasers (VECSELs )</subject><ispartof>IEEE journal of quantum electronics, 2008-02, Vol.44 (2), p.125-135</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</citedby><cites>FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4418449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4418449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kemp, A.J.</creatorcontrib><creatorcontrib>Hopkins, J.-M.</creatorcontrib><creatorcontrib>Maclean, A.J.</creatorcontrib><creatorcontrib>Schulz, N.</creatorcontrib><creatorcontrib>Rattunde, M.</creatorcontrib><creatorcontrib>Wagner, J.</creatorcontrib><creatorcontrib>Burns, D.</creatorcontrib><title>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.</description><subject>Diode-pumped solid-state lasers</subject><subject>Energy management</subject><subject>Finite element methods</subject><subject>Heat pumps</subject><subject>Laser excitation</subject><subject>Power lasers</subject><subject>semiconductor disk lasers</subject><subject>Semiconductor lasers</subject><subject>Substrates</subject><subject>Surface emitting lasers</subject><subject>Thermal management</subject><subject>Vertical cavity surface emitting lasers</subject><subject>vertical-external-cavity surface-emitting lasers (VECSELs )</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1OwzAYRS0EEqUwM7D4BZL6i53YZotKyo-CEKJsSJHrfAFDfpDdDh14d1IFMV1d6Z47HEIugcUATC8enos4YUzGGiCT_IjMIE1VBBL4MZkxBirSoOUpOQvhc6xCKDYj6_UH-s609NH05h077LfU9TSJeUTfut0PfcHO2aGvd3Y7eHrjwhctTUAfrmlOV653W6RFO4F5b9p9cOGcnDSmDXjxl3PyuirWy7uofLq9X-ZlZIFlOhK8EWmmjNCWq0TVLGtqodNEgdUSpLLZRnJRS65qmWxgo43lAjNEaCyTJuVzsph-rR9C8NhU3951xu8rYNVBSjVKqQ5SqknKSFxNhEPE_7UQoITQ_BeSz1vc</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Kemp, A.J.</creator><creator>Hopkins, J.-M.</creator><creator>Maclean, A.J.</creator><creator>Schulz, N.</creator><creator>Rattunde, M.</creator><creator>Wagner, J.</creator><creator>Burns, D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200802</creationdate><title>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</title><author>Kemp, A.J. ; Hopkins, J.-M. ; Maclean, A.J. ; Schulz, N. ; Rattunde, M. ; Wagner, J. ; Burns, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Diode-pumped solid-state lasers</topic><topic>Energy management</topic><topic>Finite element methods</topic><topic>Heat pumps</topic><topic>Laser excitation</topic><topic>Power lasers</topic><topic>semiconductor disk lasers</topic><topic>Semiconductor lasers</topic><topic>Substrates</topic><topic>Surface emitting lasers</topic><topic>Thermal management</topic><topic>Vertical cavity surface emitting lasers</topic><topic>vertical-external-cavity surface-emitting lasers (VECSELs )</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemp, A.J.</creatorcontrib><creatorcontrib>Hopkins, J.-M.</creatorcontrib><creatorcontrib>Maclean, A.J.</creatorcontrib><creatorcontrib>Schulz, N.</creatorcontrib><creatorcontrib>Rattunde, M.</creatorcontrib><creatorcontrib>Wagner, J.</creatorcontrib><creatorcontrib>Burns, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kemp, A.J.</au><au>Hopkins, J.-M.</au><au>Maclean, A.J.</au><au>Schulz, N.</au><au>Rattunde, M.</au><au>Wagner, J.</au><au>Burns, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2008-02</date><risdate>2008</risdate><volume>44</volume><issue>2</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.</abstract><pub>IEEE</pub><doi>10.1109/JQE.2007.911673</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2008-02, Vol.44 (2), p.125-135
issn 0018-9197
1558-1713
language eng
recordid cdi_crossref_primary_10_1109_JQE_2007_911673
source IEEE Electronic Library (IEL)
subjects Diode-pumped solid-state lasers
Energy management
Finite element methods
Heat pumps
Laser excitation
Power lasers
semiconductor disk lasers
Semiconductor lasers
Substrates
Surface emitting lasers
Thermal management
Vertical cavity surface emitting lasers
vertical-external-cavity surface-emitting lasers (VECSELs )
title Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Management%20in%202.3-%20%5Cmu%7D%20Semiconductor%20Disk%20Lasers:%20A%20Finite%20Element%20Analysis&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Kemp,%20A.J.&rft.date=2008-02&rft.volume=44&rft.issue=2&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2007.911673&rft_dat=%3Ccrossref_RIE%3E10_1109_JQE_2007_911673%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4418449&rfr_iscdi=true