Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis
Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this lase...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2008-02, Vol.44 (2), p.125-135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | IEEE journal of quantum electronics |
container_volume | 44 |
creator | Kemp, A.J. Hopkins, J.-M. Maclean, A.J. Schulz, N. Rattunde, M. Wagner, J. Burns, D. |
description | Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power. |
doi_str_mv | 10.1109/JQE.2007.911673 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JQE_2007_911673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4418449</ieee_id><sourcerecordid>10_1109_JQE_2007_911673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqUwM7D4BZL6i53YZotKyo-CEKJsSJHrfAFDfpDdDh14d1IFMV1d6Z47HEIugcUATC8enos4YUzGGiCT_IjMIE1VBBL4MZkxBirSoOUpOQvhc6xCKDYj6_UH-s609NH05h077LfU9TSJeUTfut0PfcHO2aGvd3Y7eHrjwhctTUAfrmlOV653W6RFO4F5b9p9cOGcnDSmDXjxl3PyuirWy7uofLq9X-ZlZIFlOhK8EWmmjNCWq0TVLGtqodNEgdUSpLLZRnJRS65qmWxgo43lAjNEaCyTJuVzsph-rR9C8NhU3951xu8rYNVBSjVKqQ5SqknKSFxNhEPE_7UQoITQ_BeSz1vc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Kemp, A.J. ; Hopkins, J.-M. ; Maclean, A.J. ; Schulz, N. ; Rattunde, M. ; Wagner, J. ; Burns, D.</creator><creatorcontrib>Kemp, A.J. ; Hopkins, J.-M. ; Maclean, A.J. ; Schulz, N. ; Rattunde, M. ; Wagner, J. ; Burns, D.</creatorcontrib><description>Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2007.911673</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Diode-pumped solid-state lasers ; Energy management ; Finite element methods ; Heat pumps ; Laser excitation ; Power lasers ; semiconductor disk lasers ; Semiconductor lasers ; Substrates ; Surface emitting lasers ; Thermal management ; Vertical cavity surface emitting lasers ; vertical-external-cavity surface-emitting lasers (VECSELs )</subject><ispartof>IEEE journal of quantum electronics, 2008-02, Vol.44 (2), p.125-135</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</citedby><cites>FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4418449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4418449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kemp, A.J.</creatorcontrib><creatorcontrib>Hopkins, J.-M.</creatorcontrib><creatorcontrib>Maclean, A.J.</creatorcontrib><creatorcontrib>Schulz, N.</creatorcontrib><creatorcontrib>Rattunde, M.</creatorcontrib><creatorcontrib>Wagner, J.</creatorcontrib><creatorcontrib>Burns, D.</creatorcontrib><title>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.</description><subject>Diode-pumped solid-state lasers</subject><subject>Energy management</subject><subject>Finite element methods</subject><subject>Heat pumps</subject><subject>Laser excitation</subject><subject>Power lasers</subject><subject>semiconductor disk lasers</subject><subject>Semiconductor lasers</subject><subject>Substrates</subject><subject>Surface emitting lasers</subject><subject>Thermal management</subject><subject>Vertical cavity surface emitting lasers</subject><subject>vertical-external-cavity surface-emitting lasers (VECSELs )</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1OwzAYRS0EEqUwM7D4BZL6i53YZotKyo-CEKJsSJHrfAFDfpDdDh14d1IFMV1d6Z47HEIugcUATC8enos4YUzGGiCT_IjMIE1VBBL4MZkxBirSoOUpOQvhc6xCKDYj6_UH-s609NH05h077LfU9TSJeUTfut0PfcHO2aGvd3Y7eHrjwhctTUAfrmlOV653W6RFO4F5b9p9cOGcnDSmDXjxl3PyuirWy7uofLq9X-ZlZIFlOhK8EWmmjNCWq0TVLGtqodNEgdUSpLLZRnJRS65qmWxgo43lAjNEaCyTJuVzsph-rR9C8NhU3951xu8rYNVBSjVKqQ5SqknKSFxNhEPE_7UQoITQ_BeSz1vc</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Kemp, A.J.</creator><creator>Hopkins, J.-M.</creator><creator>Maclean, A.J.</creator><creator>Schulz, N.</creator><creator>Rattunde, M.</creator><creator>Wagner, J.</creator><creator>Burns, D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200802</creationdate><title>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</title><author>Kemp, A.J. ; Hopkins, J.-M. ; Maclean, A.J. ; Schulz, N. ; Rattunde, M. ; Wagner, J. ; Burns, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1069-43f4568a49c3828d06fd495281c97178c6b734d738d72b1b9ac34e6ee1fc07a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Diode-pumped solid-state lasers</topic><topic>Energy management</topic><topic>Finite element methods</topic><topic>Heat pumps</topic><topic>Laser excitation</topic><topic>Power lasers</topic><topic>semiconductor disk lasers</topic><topic>Semiconductor lasers</topic><topic>Substrates</topic><topic>Surface emitting lasers</topic><topic>Thermal management</topic><topic>Vertical cavity surface emitting lasers</topic><topic>vertical-external-cavity surface-emitting lasers (VECSELs )</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemp, A.J.</creatorcontrib><creatorcontrib>Hopkins, J.-M.</creatorcontrib><creatorcontrib>Maclean, A.J.</creatorcontrib><creatorcontrib>Schulz, N.</creatorcontrib><creatorcontrib>Rattunde, M.</creatorcontrib><creatorcontrib>Wagner, J.</creatorcontrib><creatorcontrib>Burns, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kemp, A.J.</au><au>Hopkins, J.-M.</au><au>Maclean, A.J.</au><au>Schulz, N.</au><au>Rattunde, M.</au><au>Wagner, J.</au><au>Burns, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2008-02</date><risdate>2008</risdate><volume>44</volume><issue>2</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.</abstract><pub>IEEE</pub><doi>10.1109/JQE.2007.911673</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2008-02, Vol.44 (2), p.125-135 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JQE_2007_911673 |
source | IEEE Electronic Library (IEL) |
subjects | Diode-pumped solid-state lasers Energy management Finite element methods Heat pumps Laser excitation Power lasers semiconductor disk lasers Semiconductor lasers Substrates Surface emitting lasers Thermal management Vertical cavity surface emitting lasers vertical-external-cavity surface-emitting lasers (VECSELs ) |
title | Thermal Management in 2.3- \mu} Semiconductor Disk Lasers: A Finite Element Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Management%20in%202.3-%20%5Cmu%7D%20Semiconductor%20Disk%20Lasers:%20A%20Finite%20Element%20Analysis&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Kemp,%20A.J.&rft.date=2008-02&rft.volume=44&rft.issue=2&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2007.911673&rft_dat=%3Ccrossref_RIE%3E10_1109_JQE_2007_911673%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4418449&rfr_iscdi=true |