Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces
Disease-affected nervous systems exhibit anatomical or physiological impairments that degrade processing, transfer, storage, and retrieval of neural information, leading to physical or intellectual disabilities. Brain implants may potentially promote clinical means for detecting and treating neurolo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2019-07, Vol.107 (7), p.1425-1441 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1441 |
---|---|
container_issue | 7 |
container_start_page | 1425 |
container_title | Proceedings of the IEEE |
container_volume | 107 |
creator | Veletic, Mladen Balasingham, Ilangko |
description | Disease-affected nervous systems exhibit anatomical or physiological impairments that degrade processing, transfer, storage, and retrieval of neural information, leading to physical or intellectual disabilities. Brain implants may potentially promote clinical means for detecting and treating neurological symptoms by establishing direct communication between the nervous and artificial systems. Current technology can modify the neural function at the supracellular level as in Parkinson's disease, epilepsy, and depression. However, recent advances in nanotechnology, nanomaterials, and molecular communications have the potential to enable brain implants to preserve the neural function at the subcellular level, which could increase effectiveness, decrease energy consumption, and make the leadless devices chargeable from outside the body or by utilizing the body's own energy sources. In this paper, we focus on understanding the principles of elemental processes in synapses to enable diagnosis and treatment of brain diseases with pathological conditions using biomimetic synaptically interactive brain-machine interfaces (BMIs). First, we provide an overview of the synaptic communication system, followed by an outline of brain diseases that promote dysfunction in the synaptic communication system. Then, we discuss the technologies for brain implants and propose future directions for the design and fabrication of cognitive BMIs. The overarching goal of this paper is to summarize the status of engineering research at the interface between the technology and the nervous system and direct the ongoing research toward the point where synaptically interactive BMIs can be embedded in the nervous system. |
doi_str_mv | 10.1109/JPROC.2019.2915199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2019_2915199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8719957</ieee_id><sourcerecordid>2264444218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-88b0e50d614eb07f5d834caa57e283f66ad5f4eeb7e254301ec73c1c5a7f4f493</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8LnrfmY7ObHHVptVJp8eMc0nRSU9xszWaF_ntTW5zLMMzzzsCD0DXBI0KwvHtevM7rEcVEjqgknEh5ggaEc5FTystTNMCYiFxSIs_RRddtMMaMl2yAFm87r7fRmaxum6b3zujoWp-N_dp5gOD8OrNtyCZ97AMkaO1ddD-QPQTtfP6izWfisqmPEKw20F2iM6u_Org69iH6mIzf66d8Nn-c1vez3DAmYy7EEgPHq5IUsMSV5SvBCqM1r4AKZstSr7gtAJZp5gXDBEzFDDFcV7awhWRDdHu4uw3tdw9dVJu2Dz69VJSWRSpKRKLogTKh7boAVm2Da3TYKYLV3pz6M6f25tTRXArdHEIOAP4Doko7XrFfniVq1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264444218</pqid></control><display><type>article</type><title>Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Veletic, Mladen ; Balasingham, Ilangko</creator><creatorcontrib>Veletic, Mladen ; Balasingham, Ilangko</creatorcontrib><description>Disease-affected nervous systems exhibit anatomical or physiological impairments that degrade processing, transfer, storage, and retrieval of neural information, leading to physical or intellectual disabilities. Brain implants may potentially promote clinical means for detecting and treating neurological symptoms by establishing direct communication between the nervous and artificial systems. Current technology can modify the neural function at the supracellular level as in Parkinson's disease, epilepsy, and depression. However, recent advances in nanotechnology, nanomaterials, and molecular communications have the potential to enable brain implants to preserve the neural function at the subcellular level, which could increase effectiveness, decrease energy consumption, and make the leadless devices chargeable from outside the body or by utilizing the body's own energy sources. In this paper, we focus on understanding the principles of elemental processes in synapses to enable diagnosis and treatment of brain diseases with pathological conditions using biomimetic synaptically interactive brain-machine interfaces (BMIs). First, we provide an overview of the synaptic communication system, followed by an outline of brain diseases that promote dysfunction in the synaptic communication system. Then, we discuss the technologies for brain implants and propose future directions for the design and fabrication of cognitive BMIs. The overarching goal of this paper is to summarize the status of engineering research at the interface between the technology and the nervous system and direct the ongoing research toward the point where synaptically interactive BMIs can be embedded in the nervous system.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2019.2915199</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Action potentials ; Biomimetics ; Brain ; Brain diseases ; Brain research ; Brain-computer interfaces ; Brain–machine interface (BMI) ; Communications systems ; Disabilities ; Embedded systems ; Energy consumption ; Epilepsy ; Implants ; Information retrieval ; Man-machine interfaces ; Mental depression ; Molecular communication (telecommunication) ; molecular communications ; Nanomaterials ; Nanotechnology ; Nervous system ; Neural implants ; Synapses ; synaptic communication ; synaptopathy</subject><ispartof>Proceedings of the IEEE, 2019-07, Vol.107 (7), p.1425-1441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-88b0e50d614eb07f5d834caa57e283f66ad5f4eeb7e254301ec73c1c5a7f4f493</citedby><cites>FETCH-LOGICAL-c339t-88b0e50d614eb07f5d834caa57e283f66ad5f4eeb7e254301ec73c1c5a7f4f493</cites><orcidid>0000-0003-1960-8019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8719957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8719957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Veletic, Mladen</creatorcontrib><creatorcontrib>Balasingham, Ilangko</creatorcontrib><title>Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Disease-affected nervous systems exhibit anatomical or physiological impairments that degrade processing, transfer, storage, and retrieval of neural information, leading to physical or intellectual disabilities. Brain implants may potentially promote clinical means for detecting and treating neurological symptoms by establishing direct communication between the nervous and artificial systems. Current technology can modify the neural function at the supracellular level as in Parkinson's disease, epilepsy, and depression. However, recent advances in nanotechnology, nanomaterials, and molecular communications have the potential to enable brain implants to preserve the neural function at the subcellular level, which could increase effectiveness, decrease energy consumption, and make the leadless devices chargeable from outside the body or by utilizing the body's own energy sources. In this paper, we focus on understanding the principles of elemental processes in synapses to enable diagnosis and treatment of brain diseases with pathological conditions using biomimetic synaptically interactive brain-machine interfaces (BMIs). First, we provide an overview of the synaptic communication system, followed by an outline of brain diseases that promote dysfunction in the synaptic communication system. Then, we discuss the technologies for brain implants and propose future directions for the design and fabrication of cognitive BMIs. The overarching goal of this paper is to summarize the status of engineering research at the interface between the technology and the nervous system and direct the ongoing research toward the point where synaptically interactive BMIs can be embedded in the nervous system.</description><subject>Action potentials</subject><subject>Biomimetics</subject><subject>Brain</subject><subject>Brain diseases</subject><subject>Brain research</subject><subject>Brain-computer interfaces</subject><subject>Brain–machine interface (BMI)</subject><subject>Communications systems</subject><subject>Disabilities</subject><subject>Embedded systems</subject><subject>Energy consumption</subject><subject>Epilepsy</subject><subject>Implants</subject><subject>Information retrieval</subject><subject>Man-machine interfaces</subject><subject>Mental depression</subject><subject>Molecular communication (telecommunication)</subject><subject>molecular communications</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nervous system</subject><subject>Neural implants</subject><subject>Synapses</subject><subject>synaptic communication</subject><subject>synaptopathy</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8LnrfmY7ObHHVptVJp8eMc0nRSU9xszWaF_ntTW5zLMMzzzsCD0DXBI0KwvHtevM7rEcVEjqgknEh5ggaEc5FTystTNMCYiFxSIs_RRddtMMaMl2yAFm87r7fRmaxum6b3zujoWp-N_dp5gOD8OrNtyCZ97AMkaO1ddD-QPQTtfP6izWfisqmPEKw20F2iM6u_Org69iH6mIzf66d8Nn-c1vez3DAmYy7EEgPHq5IUsMSV5SvBCqM1r4AKZstSr7gtAJZp5gXDBEzFDDFcV7awhWRDdHu4uw3tdw9dVJu2Dz69VJSWRSpKRKLogTKh7boAVm2Da3TYKYLV3pz6M6f25tTRXArdHEIOAP4Doko7XrFfniVq1g</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Veletic, Mladen</creator><creator>Balasingham, Ilangko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1960-8019</orcidid></search><sort><creationdate>20190701</creationdate><title>Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces</title><author>Veletic, Mladen ; Balasingham, Ilangko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-88b0e50d614eb07f5d834caa57e283f66ad5f4eeb7e254301ec73c1c5a7f4f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action potentials</topic><topic>Biomimetics</topic><topic>Brain</topic><topic>Brain diseases</topic><topic>Brain research</topic><topic>Brain-computer interfaces</topic><topic>Brain–machine interface (BMI)</topic><topic>Communications systems</topic><topic>Disabilities</topic><topic>Embedded systems</topic><topic>Energy consumption</topic><topic>Epilepsy</topic><topic>Implants</topic><topic>Information retrieval</topic><topic>Man-machine interfaces</topic><topic>Mental depression</topic><topic>Molecular communication (telecommunication)</topic><topic>molecular communications</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nervous system</topic><topic>Neural implants</topic><topic>Synapses</topic><topic>synaptic communication</topic><topic>synaptopathy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veletic, Mladen</creatorcontrib><creatorcontrib>Balasingham, Ilangko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Veletic, Mladen</au><au>Balasingham, Ilangko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>107</volume><issue>7</issue><spage>1425</spage><epage>1441</epage><pages>1425-1441</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Disease-affected nervous systems exhibit anatomical or physiological impairments that degrade processing, transfer, storage, and retrieval of neural information, leading to physical or intellectual disabilities. Brain implants may potentially promote clinical means for detecting and treating neurological symptoms by establishing direct communication between the nervous and artificial systems. Current technology can modify the neural function at the supracellular level as in Parkinson's disease, epilepsy, and depression. However, recent advances in nanotechnology, nanomaterials, and molecular communications have the potential to enable brain implants to preserve the neural function at the subcellular level, which could increase effectiveness, decrease energy consumption, and make the leadless devices chargeable from outside the body or by utilizing the body's own energy sources. In this paper, we focus on understanding the principles of elemental processes in synapses to enable diagnosis and treatment of brain diseases with pathological conditions using biomimetic synaptically interactive brain-machine interfaces (BMIs). First, we provide an overview of the synaptic communication system, followed by an outline of brain diseases that promote dysfunction in the synaptic communication system. Then, we discuss the technologies for brain implants and propose future directions for the design and fabrication of cognitive BMIs. The overarching goal of this paper is to summarize the status of engineering research at the interface between the technology and the nervous system and direct the ongoing research toward the point where synaptically interactive BMIs can be embedded in the nervous system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2019.2915199</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1960-8019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2019-07, Vol.107 (7), p.1425-1441 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPROC_2019_2915199 |
source | IEEE Electronic Library (IEL) |
subjects | Action potentials Biomimetics Brain Brain diseases Brain research Brain-computer interfaces Brain–machine interface (BMI) Communications systems Disabilities Embedded systems Energy consumption Epilepsy Implants Information retrieval Man-machine interfaces Mental depression Molecular communication (telecommunication) molecular communications Nanomaterials Nanotechnology Nervous system Neural implants Synapses synaptic communication synaptopathy |
title | Synaptic Communication Engineering for Future Cognitive Brain-Machine Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Communication%20Engineering%20for%20Future%20Cognitive%20Brain-Machine%20Interfaces&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Veletic,%20Mladen&rft.date=2019-07-01&rft.volume=107&rft.issue=7&rft.spage=1425&rft.epage=1441&rft.pages=1425-1441&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2019.2915199&rft_dat=%3Cproquest_RIE%3E2264444218%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264444218&rft_id=info:pmid/&rft_ieee_id=8719957&rfr_iscdi=true |