Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data
The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2013-03, Vol.101 (3), p.798-830 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 3 |
container_start_page | 798 |
container_title | Proceedings of the IEEE |
container_volume | 101 |
creator | Paladini, Riccardo Ferro Famil, Laurent Pottier, Eric Martorella, Marco Berizzi, Fabrizio Dalle Mese, Enzo |
description | The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems. |
doi_str_mv | 10.1109/JPROC.2012.2227894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2012_2227894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6459519</ieee_id><sourcerecordid>1671456976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</originalsourceid><addsrcrecordid>eNo9kcFuGyEURVHVSHGT_kC6YdnNOA8GmGEZOXXiypItx8tII8o8HCo8uMNMpPxNPjXYjrrhSnDPfU9cQm4YTBkDfft7vVnNphwYn3LOq1qLL2TCpKwLzqX6SiYArC40Z_qSfEvpLwCUUpUT8r6Ovhvo1vQ7HOgsmJS889YMPnb01Rs6N2mgy5hSwJSo6Vr6NLrs8Jix59Ued6agz-vk6VFePF10r6b3Jr_eo437Q0z-FBYdffS7l2KDKYbxdHVMm48hvNF1DBna49B7S5_uNreLfNB7M5hrcuFMSPj9U6_Idv5rO3sslquHxexuWdgSYCh0WwsmXFsKgVIDWGedq0CoslLQKiZFXbUgjQP3pzV1BVYgYtsiN1gyW16Rn-fYQx__jZiGZu-TxRBMh3FMDVMVE1LpSmUrP1ttn7-lR9cc8uqmf2sYNMc2mlMbzbGN5rONDP04Qz6P_Q8oIbVkuvwAp5OIOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456976</pqid></control><display><type>article</type><title>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</title><source>IEEE Explore</source><creator>Paladini, Riccardo ; Ferro Famil, Laurent ; Pottier, Eric ; Martorella, Marco ; Berizzi, Fabrizio ; Dalle Mese, Enzo</creator><creatorcontrib>Paladini, Riccardo ; Ferro Famil, Laurent ; Pottier, Eric ; Martorella, Marco ; Berizzi, Fabrizio ; Dalle Mese, Enzo</creatorcontrib><description>The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2012.2227894</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic target classification ; automatic target recognition ; Circular polarization ; Classification ; classification algorithm ; Classification algorithms ; data mining ; Decomposition ; decomposition theorem ; depolarization effect ; deterministic processes ; Earth Observing System ; Earth surface ; eigenvalues and eigenfunctions ; Einstein photon circular polarization ; Faraday rotation ; geophysics computing ; invariant decomposition ; Invariants ; Lossless ; lunar surface ; Mathematical analysis ; Matrix decomposition ; Moon ; orientation invariant parameters ; particle characterization of radio scattering theory ; polarimetry ; Polarization ; polarization transformation properties ; radar ; Radar antennas ; radar cross section (RCS) ; radar polarimetry ; Radar scattering ; radio scattering models ; Remote sensing ; remote sensing by radar ; Sinclair matrix ; Surface treatment ; Surveillance ; Synthetic aperture radar ; target decomposition ; target scattering characterization ; Target tracking ; vectors</subject><ispartof>Proceedings of the IEEE, 2013-03, Vol.101 (3), p.798-830</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</citedby><cites>FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6459519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6459519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paladini, Riccardo</creatorcontrib><creatorcontrib>Ferro Famil, Laurent</creatorcontrib><creatorcontrib>Pottier, Eric</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><creatorcontrib>Berizzi, Fabrizio</creatorcontrib><creatorcontrib>Dalle Mese, Enzo</creatorcontrib><title>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.</description><subject>Automatic target classification</subject><subject>automatic target recognition</subject><subject>Circular polarization</subject><subject>Classification</subject><subject>classification algorithm</subject><subject>Classification algorithms</subject><subject>data mining</subject><subject>Decomposition</subject><subject>decomposition theorem</subject><subject>depolarization effect</subject><subject>deterministic processes</subject><subject>Earth Observing System</subject><subject>Earth surface</subject><subject>eigenvalues and eigenfunctions</subject><subject>Einstein photon circular polarization</subject><subject>Faraday rotation</subject><subject>geophysics computing</subject><subject>invariant decomposition</subject><subject>Invariants</subject><subject>Lossless</subject><subject>lunar surface</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Moon</subject><subject>orientation invariant parameters</subject><subject>particle characterization of radio scattering theory</subject><subject>polarimetry</subject><subject>Polarization</subject><subject>polarization transformation properties</subject><subject>radar</subject><subject>Radar antennas</subject><subject>radar cross section (RCS)</subject><subject>radar polarimetry</subject><subject>Radar scattering</subject><subject>radio scattering models</subject><subject>Remote sensing</subject><subject>remote sensing by radar</subject><subject>Sinclair matrix</subject><subject>Surface treatment</subject><subject>Surveillance</subject><subject>Synthetic aperture radar</subject><subject>target decomposition</subject><subject>target scattering characterization</subject><subject>Target tracking</subject><subject>vectors</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kcFuGyEURVHVSHGT_kC6YdnNOA8GmGEZOXXiypItx8tII8o8HCo8uMNMpPxNPjXYjrrhSnDPfU9cQm4YTBkDfft7vVnNphwYn3LOq1qLL2TCpKwLzqX6SiYArC40Z_qSfEvpLwCUUpUT8r6Ovhvo1vQ7HOgsmJS889YMPnb01Rs6N2mgy5hSwJSo6Vr6NLrs8Jix59Ued6agz-vk6VFePF10r6b3Jr_eo437Q0z-FBYdffS7l2KDKYbxdHVMm48hvNF1DBna49B7S5_uNreLfNB7M5hrcuFMSPj9U6_Idv5rO3sslquHxexuWdgSYCh0WwsmXFsKgVIDWGedq0CoslLQKiZFXbUgjQP3pzV1BVYgYtsiN1gyW16Rn-fYQx__jZiGZu-TxRBMh3FMDVMVE1LpSmUrP1ttn7-lR9cc8uqmf2sYNMc2mlMbzbGN5rONDP04Qz6P_Q8oIbVkuvwAp5OIOQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Paladini, Riccardo</creator><creator>Ferro Famil, Laurent</creator><creator>Pottier, Eric</creator><creator>Martorella, Marco</creator><creator>Berizzi, Fabrizio</creator><creator>Dalle Mese, Enzo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</title><author>Paladini, Riccardo ; Ferro Famil, Laurent ; Pottier, Eric ; Martorella, Marco ; Berizzi, Fabrizio ; Dalle Mese, Enzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic target classification</topic><topic>automatic target recognition</topic><topic>Circular polarization</topic><topic>Classification</topic><topic>classification algorithm</topic><topic>Classification algorithms</topic><topic>data mining</topic><topic>Decomposition</topic><topic>decomposition theorem</topic><topic>depolarization effect</topic><topic>deterministic processes</topic><topic>Earth Observing System</topic><topic>Earth surface</topic><topic>eigenvalues and eigenfunctions</topic><topic>Einstein photon circular polarization</topic><topic>Faraday rotation</topic><topic>geophysics computing</topic><topic>invariant decomposition</topic><topic>Invariants</topic><topic>Lossless</topic><topic>lunar surface</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Moon</topic><topic>orientation invariant parameters</topic><topic>particle characterization of radio scattering theory</topic><topic>polarimetry</topic><topic>Polarization</topic><topic>polarization transformation properties</topic><topic>radar</topic><topic>Radar antennas</topic><topic>radar cross section (RCS)</topic><topic>radar polarimetry</topic><topic>Radar scattering</topic><topic>radio scattering models</topic><topic>Remote sensing</topic><topic>remote sensing by radar</topic><topic>Sinclair matrix</topic><topic>Surface treatment</topic><topic>Surveillance</topic><topic>Synthetic aperture radar</topic><topic>target decomposition</topic><topic>target scattering characterization</topic><topic>Target tracking</topic><topic>vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paladini, Riccardo</creatorcontrib><creatorcontrib>Ferro Famil, Laurent</creatorcontrib><creatorcontrib>Pottier, Eric</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><creatorcontrib>Berizzi, Fabrizio</creatorcontrib><creatorcontrib>Dalle Mese, Enzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paladini, Riccardo</au><au>Ferro Famil, Laurent</au><au>Pottier, Eric</au><au>Martorella, Marco</au><au>Berizzi, Fabrizio</au><au>Dalle Mese, Enzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>101</volume><issue>3</issue><spage>798</spage><epage>830</epage><pages>798-830</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.</abstract><pub>IEEE</pub><doi>10.1109/JPROC.2012.2227894</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2013-03, Vol.101 (3), p.798-830 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPROC_2012_2227894 |
source | IEEE Explore |
subjects | Automatic target classification automatic target recognition Circular polarization Classification classification algorithm Classification algorithms data mining Decomposition decomposition theorem depolarization effect deterministic processes Earth Observing System Earth surface eigenvalues and eigenfunctions Einstein photon circular polarization Faraday rotation geophysics computing invariant decomposition Invariants Lossless lunar surface Mathematical analysis Matrix decomposition Moon orientation invariant parameters particle characterization of radio scattering theory polarimetry Polarization polarization transformation properties radar Radar antennas radar cross section (RCS) radar polarimetry Radar scattering radio scattering models Remote sensing remote sensing by radar Sinclair matrix Surface treatment Surveillance Synthetic aperture radar target decomposition target scattering characterization Target tracking vectors |
title | Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Target%20Classification%20via%20Fast%20Lossless%20and%20Sufficient%20%5COmega-%20%5CPsi%20-%20%5CPhi%20Invariant%20Decomposition%20of%20High-Resolution%20and%20Fully%20Polarimetric%20SAR/ISAR%20Data&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Paladini,%20Riccardo&rft.date=2013-03-01&rft.volume=101&rft.issue=3&rft.spage=798&rft.epage=830&rft.pages=798-830&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2012.2227894&rft_dat=%3Cproquest_RIE%3E1671456976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671456976&rft_id=info:pmid/&rft_ieee_id=6459519&rfr_iscdi=true |