Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data

The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2013-03, Vol.101 (3), p.798-830
Hauptverfasser: Paladini, Riccardo, Ferro Famil, Laurent, Pottier, Eric, Martorella, Marco, Berizzi, Fabrizio, Dalle Mese, Enzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 3
container_start_page 798
container_title Proceedings of the IEEE
container_volume 101
creator Paladini, Riccardo
Ferro Famil, Laurent
Pottier, Eric
Martorella, Marco
Berizzi, Fabrizio
Dalle Mese, Enzo
description The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.
doi_str_mv 10.1109/JPROC.2012.2227894
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2012_2227894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6459519</ieee_id><sourcerecordid>1671456976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</originalsourceid><addsrcrecordid>eNo9kcFuGyEURVHVSHGT_kC6YdnNOA8GmGEZOXXiypItx8tII8o8HCo8uMNMpPxNPjXYjrrhSnDPfU9cQm4YTBkDfft7vVnNphwYn3LOq1qLL2TCpKwLzqX6SiYArC40Z_qSfEvpLwCUUpUT8r6Ovhvo1vQ7HOgsmJS889YMPnb01Rs6N2mgy5hSwJSo6Vr6NLrs8Jix59Ued6agz-vk6VFePF10r6b3Jr_eo437Q0z-FBYdffS7l2KDKYbxdHVMm48hvNF1DBna49B7S5_uNreLfNB7M5hrcuFMSPj9U6_Idv5rO3sslquHxexuWdgSYCh0WwsmXFsKgVIDWGedq0CoslLQKiZFXbUgjQP3pzV1BVYgYtsiN1gyW16Rn-fYQx__jZiGZu-TxRBMh3FMDVMVE1LpSmUrP1ttn7-lR9cc8uqmf2sYNMc2mlMbzbGN5rONDP04Qz6P_Q8oIbVkuvwAp5OIOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456976</pqid></control><display><type>article</type><title>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</title><source>IEEE Explore</source><creator>Paladini, Riccardo ; Ferro Famil, Laurent ; Pottier, Eric ; Martorella, Marco ; Berizzi, Fabrizio ; Dalle Mese, Enzo</creator><creatorcontrib>Paladini, Riccardo ; Ferro Famil, Laurent ; Pottier, Eric ; Martorella, Marco ; Berizzi, Fabrizio ; Dalle Mese, Enzo</creatorcontrib><description>The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2012.2227894</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic target classification ; automatic target recognition ; Circular polarization ; Classification ; classification algorithm ; Classification algorithms ; data mining ; Decomposition ; decomposition theorem ; depolarization effect ; deterministic processes ; Earth Observing System ; Earth surface ; eigenvalues and eigenfunctions ; Einstein photon circular polarization ; Faraday rotation ; geophysics computing ; invariant decomposition ; Invariants ; Lossless ; lunar surface ; Mathematical analysis ; Matrix decomposition ; Moon ; orientation invariant parameters ; particle characterization of radio scattering theory ; polarimetry ; Polarization ; polarization transformation properties ; radar ; Radar antennas ; radar cross section (RCS) ; radar polarimetry ; Radar scattering ; radio scattering models ; Remote sensing ; remote sensing by radar ; Sinclair matrix ; Surface treatment ; Surveillance ; Synthetic aperture radar ; target decomposition ; target scattering characterization ; Target tracking ; vectors</subject><ispartof>Proceedings of the IEEE, 2013-03, Vol.101 (3), p.798-830</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</citedby><cites>FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6459519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6459519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paladini, Riccardo</creatorcontrib><creatorcontrib>Ferro Famil, Laurent</creatorcontrib><creatorcontrib>Pottier, Eric</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><creatorcontrib>Berizzi, Fabrizio</creatorcontrib><creatorcontrib>Dalle Mese, Enzo</creatorcontrib><title>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.</description><subject>Automatic target classification</subject><subject>automatic target recognition</subject><subject>Circular polarization</subject><subject>Classification</subject><subject>classification algorithm</subject><subject>Classification algorithms</subject><subject>data mining</subject><subject>Decomposition</subject><subject>decomposition theorem</subject><subject>depolarization effect</subject><subject>deterministic processes</subject><subject>Earth Observing System</subject><subject>Earth surface</subject><subject>eigenvalues and eigenfunctions</subject><subject>Einstein photon circular polarization</subject><subject>Faraday rotation</subject><subject>geophysics computing</subject><subject>invariant decomposition</subject><subject>Invariants</subject><subject>Lossless</subject><subject>lunar surface</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Moon</subject><subject>orientation invariant parameters</subject><subject>particle characterization of radio scattering theory</subject><subject>polarimetry</subject><subject>Polarization</subject><subject>polarization transformation properties</subject><subject>radar</subject><subject>Radar antennas</subject><subject>radar cross section (RCS)</subject><subject>radar polarimetry</subject><subject>Radar scattering</subject><subject>radio scattering models</subject><subject>Remote sensing</subject><subject>remote sensing by radar</subject><subject>Sinclair matrix</subject><subject>Surface treatment</subject><subject>Surveillance</subject><subject>Synthetic aperture radar</subject><subject>target decomposition</subject><subject>target scattering characterization</subject><subject>Target tracking</subject><subject>vectors</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kcFuGyEURVHVSHGT_kC6YdnNOA8GmGEZOXXiypItx8tII8o8HCo8uMNMpPxNPjXYjrrhSnDPfU9cQm4YTBkDfft7vVnNphwYn3LOq1qLL2TCpKwLzqX6SiYArC40Z_qSfEvpLwCUUpUT8r6Ovhvo1vQ7HOgsmJS889YMPnb01Rs6N2mgy5hSwJSo6Vr6NLrs8Jix59Ued6agz-vk6VFePF10r6b3Jr_eo437Q0z-FBYdffS7l2KDKYbxdHVMm48hvNF1DBna49B7S5_uNreLfNB7M5hrcuFMSPj9U6_Idv5rO3sslquHxexuWdgSYCh0WwsmXFsKgVIDWGedq0CoslLQKiZFXbUgjQP3pzV1BVYgYtsiN1gyW16Rn-fYQx__jZiGZu-TxRBMh3FMDVMVE1LpSmUrP1ttn7-lR9cc8uqmf2sYNMc2mlMbzbGN5rONDP04Qz6P_Q8oIbVkuvwAp5OIOQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Paladini, Riccardo</creator><creator>Ferro Famil, Laurent</creator><creator>Pottier, Eric</creator><creator>Martorella, Marco</creator><creator>Berizzi, Fabrizio</creator><creator>Dalle Mese, Enzo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</title><author>Paladini, Riccardo ; Ferro Famil, Laurent ; Pottier, Eric ; Martorella, Marco ; Berizzi, Fabrizio ; Dalle Mese, Enzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9d8414fd344e5900cfcff70463760d615487d05af0fbda870c4eeedde2ae31c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic target classification</topic><topic>automatic target recognition</topic><topic>Circular polarization</topic><topic>Classification</topic><topic>classification algorithm</topic><topic>Classification algorithms</topic><topic>data mining</topic><topic>Decomposition</topic><topic>decomposition theorem</topic><topic>depolarization effect</topic><topic>deterministic processes</topic><topic>Earth Observing System</topic><topic>Earth surface</topic><topic>eigenvalues and eigenfunctions</topic><topic>Einstein photon circular polarization</topic><topic>Faraday rotation</topic><topic>geophysics computing</topic><topic>invariant decomposition</topic><topic>Invariants</topic><topic>Lossless</topic><topic>lunar surface</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Moon</topic><topic>orientation invariant parameters</topic><topic>particle characterization of radio scattering theory</topic><topic>polarimetry</topic><topic>Polarization</topic><topic>polarization transformation properties</topic><topic>radar</topic><topic>Radar antennas</topic><topic>radar cross section (RCS)</topic><topic>radar polarimetry</topic><topic>Radar scattering</topic><topic>radio scattering models</topic><topic>Remote sensing</topic><topic>remote sensing by radar</topic><topic>Sinclair matrix</topic><topic>Surface treatment</topic><topic>Surveillance</topic><topic>Synthetic aperture radar</topic><topic>target decomposition</topic><topic>target scattering characterization</topic><topic>Target tracking</topic><topic>vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paladini, Riccardo</creatorcontrib><creatorcontrib>Ferro Famil, Laurent</creatorcontrib><creatorcontrib>Pottier, Eric</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><creatorcontrib>Berizzi, Fabrizio</creatorcontrib><creatorcontrib>Dalle Mese, Enzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paladini, Riccardo</au><au>Ferro Famil, Laurent</au><au>Pottier, Eric</au><au>Martorella, Marco</au><au>Berizzi, Fabrizio</au><au>Dalle Mese, Enzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>101</volume><issue>3</issue><spage>798</spage><epage>830</epage><pages>798-830</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The classification of high-resolution and fully polarimetric SAR/ISAR data has gained a lot of attention in remote sensing and surveillance problems and is addressed by decomposing the radar target Sinclair matrix. In this paper, the Sinclair matrix has been projected onto the circular polarization basis and is decomposed into five parameters that are invariant to the relative phase Φ, the Faraday rotation Ω, and the target orientation Ψ without any information loss. The physical interpretation of these parameters, useful for target classification studies, is found in the wave-particle nature of radar scattering phenomenon given the circular polarization of elemental packets of energy. The proposed deterministic target decomposition is based on the left-orthogonal special unitary SU(2) basis, decomposing the signal backscattered by point targets, represented by the target vector, via six special unitary SU(4) rotation matrices, and by providing full resolution and lossless analysis. Comparisons between the proposed deterministic target decomposition and the Cameron, Kennaugh, Krogager, and Touzi decompositions are also pointed out. Generally, the proposed decomposition provides simpler interpretation, faster parameter extraction, and better generalization properties for the analysis of nonreciprocal or random targets. Several polarimetric SAR/ISAR data sets of UWB data, airborne fully polarimetric EMISAR data, and spaceborne RADARSAT2 are used for illustrating the effectiveness and the usefulness of this decomposition for the classification of point targets. Results are very promising for application use in the next generation of high-resolution spaceborne and airborne Pol-SAR and Pol-ISAR systems.</abstract><pub>IEEE</pub><doi>10.1109/JPROC.2012.2227894</doi><tpages>33</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2013-03, Vol.101 (3), p.798-830
issn 0018-9219
1558-2256
language eng
recordid cdi_crossref_primary_10_1109_JPROC_2012_2227894
source IEEE Explore
subjects Automatic target classification
automatic target recognition
Circular polarization
Classification
classification algorithm
Classification algorithms
data mining
Decomposition
decomposition theorem
depolarization effect
deterministic processes
Earth Observing System
Earth surface
eigenvalues and eigenfunctions
Einstein photon circular polarization
Faraday rotation
geophysics computing
invariant decomposition
Invariants
Lossless
lunar surface
Mathematical analysis
Matrix decomposition
Moon
orientation invariant parameters
particle characterization of radio scattering theory
polarimetry
Polarization
polarization transformation properties
radar
Radar antennas
radar cross section (RCS)
radar polarimetry
Radar scattering
radio scattering models
Remote sensing
remote sensing by radar
Sinclair matrix
Surface treatment
Surveillance
Synthetic aperture radar
target decomposition
target scattering characterization
Target tracking
vectors
title Point Target Classification via Fast Lossless and Sufficient \Omega- \Psi - \Phi Invariant Decomposition of High-Resolution and Fully Polarimetric SAR/ISAR Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Target%20Classification%20via%20Fast%20Lossless%20and%20Sufficient%20%5COmega-%20%5CPsi%20-%20%5CPhi%20Invariant%20Decomposition%20of%20High-Resolution%20and%20Fully%20Polarimetric%20SAR/ISAR%20Data&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Paladini,%20Riccardo&rft.date=2013-03-01&rft.volume=101&rft.issue=3&rft.spage=798&rft.epage=830&rft.pages=798-830&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2012.2227894&rft_dat=%3Cproquest_RIE%3E1671456976%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671456976&rft_id=info:pmid/&rft_ieee_id=6459519&rfr_iscdi=true