Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects

In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2009-07, Vol.97 (7), p.1284-1303
Hauptverfasser: Tsybeskov, Leonid, Lockwood, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1303
container_issue 7
container_start_page 1284
container_title Proceedings of the IEEE
container_volume 97
creator Tsybeskov, Leonid
Lockwood, David J.
description In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.
doi_str_mv 10.1109/JPROC.2009.2020711
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2009_2020711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075757</ieee_id><sourcerecordid>2303976931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxa2KSl0oX6Bcoh4qLgHPOJPYR7Ra_lSrblXKOfI6DhglzmI7B749hkU99FBVI80c5veeZvQY-wL8DICr8-8_f22WZ8i5yg15A_CBLYBIlohUH7AF5yBLhaA-scMYHznngmqxYHe3bnBm8uWVDaP2bh6LH9pPMYXZpDnYWPRTKNbu_iEVq9GlZEMstO-KjS-XD25XbHbJGT0UNz6vspG3JsXP7GOvh2iP3-cRu7tc_V5el-vN1c3yYl0aoSCVHSrQBupGi6rSDW07kJ2UYDWKTgFJjZbAUNNVndxiT9uM4LYmjrbpJYoj9m3vuwvT02xjakcXjR0G7e00x1bUgih_nsHTf4L5BkCqoPkPlCNKpSoSGf36F_o4zcHnj1tJUhISVhnCPWTCFGOwfbsLbtThOTu1r-G1b-G1r-G17-Fl0cle5Ky1fwTEG8olXgBdm5SY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858852524</pqid></control><display><type>article</type><title>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</title><source>IEEE Electronic Library (IEL)</source><creator>Tsybeskov, Leonid ; Lockwood, David J.</creator><creatorcontrib>Tsybeskov, Leonid ; Lockwood, David J.</creatorcontrib><description>In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2020711</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS technology ; Compatibility ; Electroluminescence ; Emitters ; germanium ; Germanium silicon alloys ; light emission ; Light emitting diodes ; nanoclusters ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructures ; Optical interconnections ; Optical interconnects ; Optical waveguides ; photoluminescence ; Quantum dots ; quantum wells ; silicon ; Silicon germanides ; Silicon germanium ; Stimulated emission ; Temperature</subject><ispartof>Proceedings of the IEEE, 2009-07, Vol.97 (7), p.1284-1303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</citedby><cites>FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5075757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsybeskov, Leonid</creatorcontrib><creatorcontrib>Lockwood, David J.</creatorcontrib><title>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.</description><subject>CMOS</subject><subject>CMOS technology</subject><subject>Compatibility</subject><subject>Electroluminescence</subject><subject>Emitters</subject><subject>germanium</subject><subject>Germanium silicon alloys</subject><subject>light emission</subject><subject>Light emitting diodes</subject><subject>nanoclusters</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Optical interconnections</subject><subject>Optical interconnects</subject><subject>Optical waveguides</subject><subject>photoluminescence</subject><subject>Quantum dots</subject><subject>quantum wells</subject><subject>silicon</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>Stimulated emission</subject><subject>Temperature</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU9P3DAQxa2KSl0oX6Bcoh4qLgHPOJPYR7Ra_lSrblXKOfI6DhglzmI7B749hkU99FBVI80c5veeZvQY-wL8DICr8-8_f22WZ8i5yg15A_CBLYBIlohUH7AF5yBLhaA-scMYHznngmqxYHe3bnBm8uWVDaP2bh6LH9pPMYXZpDnYWPRTKNbu_iEVq9GlZEMstO-KjS-XD25XbHbJGT0UNz6vspG3JsXP7GOvh2iP3-cRu7tc_V5el-vN1c3yYl0aoSCVHSrQBupGi6rSDW07kJ2UYDWKTgFJjZbAUNNVndxiT9uM4LYmjrbpJYoj9m3vuwvT02xjakcXjR0G7e00x1bUgih_nsHTf4L5BkCqoPkPlCNKpSoSGf36F_o4zcHnj1tJUhISVhnCPWTCFGOwfbsLbtThOTu1r-G1b-G1r-G17-Fl0cle5Ky1fwTEG8olXgBdm5SY</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Tsybeskov, Leonid</creator><creator>Lockwood, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</title><author>Tsybeskov, Leonid ; Lockwood, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CMOS</topic><topic>CMOS technology</topic><topic>Compatibility</topic><topic>Electroluminescence</topic><topic>Emitters</topic><topic>germanium</topic><topic>Germanium silicon alloys</topic><topic>light emission</topic><topic>Light emitting diodes</topic><topic>nanoclusters</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Optical interconnections</topic><topic>Optical interconnects</topic><topic>Optical waveguides</topic><topic>photoluminescence</topic><topic>Quantum dots</topic><topic>quantum wells</topic><topic>silicon</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>Stimulated emission</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsybeskov, Leonid</creatorcontrib><creatorcontrib>Lockwood, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsybeskov, Leonid</au><au>Lockwood, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>97</volume><issue>7</issue><spage>1284</spage><epage>1303</epage><pages>1284-1303</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2009.2020711</doi><tpages>20</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2009-07, Vol.97 (7), p.1284-1303
issn 0018-9219
1558-2256
language eng
recordid cdi_crossref_primary_10_1109_JPROC_2009_2020711
source IEEE Electronic Library (IEL)
subjects CMOS
CMOS technology
Compatibility
Electroluminescence
Emitters
germanium
Germanium silicon alloys
light emission
Light emitting diodes
nanoclusters
Nanocomposites
Nanomaterials
Nanostructure
Nanostructures
Optical interconnections
Optical interconnects
Optical waveguides
photoluminescence
Quantum dots
quantum wells
silicon
Silicon germanides
Silicon germanium
Stimulated emission
Temperature
title Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon-Germanium%20Nanostructures%20for%20Light%20Emitters%20and%20On-Chip%20Optical%20Interconnects&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Tsybeskov,%20Leonid&rft.date=2009-07-01&rft.volume=97&rft.issue=7&rft.spage=1284&rft.epage=1303&rft.pages=1284-1303&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2020711&rft_dat=%3Cproquest_RIE%3E2303976931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858852524&rft_id=info:pmid/&rft_ieee_id=5075757&rfr_iscdi=true