Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects
In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2009-07, Vol.97 (7), p.1284-1303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1303 |
---|---|
container_issue | 7 |
container_start_page | 1284 |
container_title | Proceedings of the IEEE |
container_volume | 97 |
creator | Tsybeskov, Leonid Lockwood, David J. |
description | In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed. |
doi_str_mv | 10.1109/JPROC.2009.2020711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPROC_2009_2020711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075757</ieee_id><sourcerecordid>2303976931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxa2KSl0oX6Bcoh4qLgHPOJPYR7Ra_lSrblXKOfI6DhglzmI7B749hkU99FBVI80c5veeZvQY-wL8DICr8-8_f22WZ8i5yg15A_CBLYBIlohUH7AF5yBLhaA-scMYHznngmqxYHe3bnBm8uWVDaP2bh6LH9pPMYXZpDnYWPRTKNbu_iEVq9GlZEMstO-KjS-XD25XbHbJGT0UNz6vspG3JsXP7GOvh2iP3-cRu7tc_V5el-vN1c3yYl0aoSCVHSrQBupGi6rSDW07kJ2UYDWKTgFJjZbAUNNVndxiT9uM4LYmjrbpJYoj9m3vuwvT02xjakcXjR0G7e00x1bUgih_nsHTf4L5BkCqoPkPlCNKpSoSGf36F_o4zcHnj1tJUhISVhnCPWTCFGOwfbsLbtThOTu1r-G1b-G1r-G17-Fl0cle5Ky1fwTEG8olXgBdm5SY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858852524</pqid></control><display><type>article</type><title>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</title><source>IEEE Electronic Library (IEL)</source><creator>Tsybeskov, Leonid ; Lockwood, David J.</creator><creatorcontrib>Tsybeskov, Leonid ; Lockwood, David J.</creatorcontrib><description>In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2020711</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS technology ; Compatibility ; Electroluminescence ; Emitters ; germanium ; Germanium silicon alloys ; light emission ; Light emitting diodes ; nanoclusters ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanostructures ; Optical interconnections ; Optical interconnects ; Optical waveguides ; photoluminescence ; Quantum dots ; quantum wells ; silicon ; Silicon germanides ; Silicon germanium ; Stimulated emission ; Temperature</subject><ispartof>Proceedings of the IEEE, 2009-07, Vol.97 (7), p.1284-1303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</citedby><cites>FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5075757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsybeskov, Leonid</creatorcontrib><creatorcontrib>Lockwood, David J.</creatorcontrib><title>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.</description><subject>CMOS</subject><subject>CMOS technology</subject><subject>Compatibility</subject><subject>Electroluminescence</subject><subject>Emitters</subject><subject>germanium</subject><subject>Germanium silicon alloys</subject><subject>light emission</subject><subject>Light emitting diodes</subject><subject>nanoclusters</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Optical interconnections</subject><subject>Optical interconnects</subject><subject>Optical waveguides</subject><subject>photoluminescence</subject><subject>Quantum dots</subject><subject>quantum wells</subject><subject>silicon</subject><subject>Silicon germanides</subject><subject>Silicon germanium</subject><subject>Stimulated emission</subject><subject>Temperature</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU9P3DAQxa2KSl0oX6Bcoh4qLgHPOJPYR7Ra_lSrblXKOfI6DhglzmI7B749hkU99FBVI80c5veeZvQY-wL8DICr8-8_f22WZ8i5yg15A_CBLYBIlohUH7AF5yBLhaA-scMYHznngmqxYHe3bnBm8uWVDaP2bh6LH9pPMYXZpDnYWPRTKNbu_iEVq9GlZEMstO-KjS-XD25XbHbJGT0UNz6vspG3JsXP7GOvh2iP3-cRu7tc_V5el-vN1c3yYl0aoSCVHSrQBupGi6rSDW07kJ2UYDWKTgFJjZbAUNNVndxiT9uM4LYmjrbpJYoj9m3vuwvT02xjakcXjR0G7e00x1bUgih_nsHTf4L5BkCqoPkPlCNKpSoSGf36F_o4zcHnj1tJUhISVhnCPWTCFGOwfbsLbtThOTu1r-G1b-G1r-G17-Fl0cle5Ky1fwTEG8olXgBdm5SY</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Tsybeskov, Leonid</creator><creator>Lockwood, David J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</title><author>Tsybeskov, Leonid ; Lockwood, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d291ac167a344a75bd18d881ea23d9158a2e51c57d4d8b2f5b5bd2b6502e7f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>CMOS</topic><topic>CMOS technology</topic><topic>Compatibility</topic><topic>Electroluminescence</topic><topic>Emitters</topic><topic>germanium</topic><topic>Germanium silicon alloys</topic><topic>light emission</topic><topic>Light emitting diodes</topic><topic>nanoclusters</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Optical interconnections</topic><topic>Optical interconnects</topic><topic>Optical waveguides</topic><topic>photoluminescence</topic><topic>Quantum dots</topic><topic>quantum wells</topic><topic>silicon</topic><topic>Silicon germanides</topic><topic>Silicon germanium</topic><topic>Stimulated emission</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsybeskov, Leonid</creatorcontrib><creatorcontrib>Lockwood, David J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsybeskov, Leonid</au><au>Lockwood, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>97</volume><issue>7</issue><spage>1284</spage><epage>1303</epage><pages>1284-1303</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2009.2020711</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2009-07, Vol.97 (7), p.1284-1303 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPROC_2009_2020711 |
source | IEEE Electronic Library (IEL) |
subjects | CMOS CMOS technology Compatibility Electroluminescence Emitters germanium Germanium silicon alloys light emission Light emitting diodes nanoclusters Nanocomposites Nanomaterials Nanostructure Nanostructures Optical interconnections Optical interconnects Optical waveguides photoluminescence Quantum dots quantum wells silicon Silicon germanides Silicon germanium Stimulated emission Temperature |
title | Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon-Germanium%20Nanostructures%20for%20Light%20Emitters%20and%20On-Chip%20Optical%20Interconnects&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Tsybeskov,%20Leonid&rft.date=2009-07-01&rft.volume=97&rft.issue=7&rft.spage=1284&rft.epage=1303&rft.pages=1284-1303&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2020711&rft_dat=%3Cproquest_RIE%3E2303976931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858852524&rft_id=info:pmid/&rft_ieee_id=5075757&rfr_iscdi=true |