Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm

Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coheren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2024-12, Vol.16 (6), p.1-7
Hauptverfasser: Wu, Zhiyong, Xue, Jinbo, Liu, Wei, Jin, Dairan, Fu, Xingxin, Li, Hongli, Tan, Yixuan, Cao, Jingtai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 6
container_start_page 1
container_title IEEE photonics journal
container_volume 16
creator Wu, Zhiyong
Xue, Jinbo
Liu, Wei
Jin, Dairan
Fu, Xingxin
Li, Hongli
Tan, Yixuan
Cao, Jingtai
description Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.
doi_str_mv 10.1109/JPHOT.2024.3488073
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2024_3488073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10738482</ieee_id><doaj_id>oai_doaj_org_article_f226e96efb454e589be6ec33e404adf3</doaj_id><sourcerecordid>oai_doaj_org_article_f226e96efb454e589be6ec33e404adf3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-1485a7bd55d915ae03c58a2d9b787ccd01d48bc14d2f2a50e1980e275a7231f53</originalsourceid><addsrcrecordid>eNpNkN1KAzEQRoMoWKsvIF7sC7Tmdze5rFVrpWjReuFVyCaTGtltJLsVfHt3bSlezccM52M4CF0SPCYEq-vH5cPzakwx5WPGpcQFO0IDojgb4ZwXx4csxCk6a5pPjHNFhBqg96dtDSlYU2Wvod5Wpg1xk0WfLSH5mGqzsZDN668Uv6GGTdufpvEDUp8X4Xbykt2YBlzWUa_L2W02qdYxhfajPkcn3lQNXOznEL3d362mD6PF82w-nSxGlgrVjgiXwhSlE8J1HxnAzAppqFNlIQtrHSaOy9IS7qinRmAgSmKgRQdRRrxgQzTf9bpoPvVXCrVJPzqaoP8WMa21SW2wFWhPaQ4qB19ywUFIVUIOljHgmBvnWddFd102xaZJ4A99BOtetP4TrXvRei-6g652UACAf0DBJJeU_QI0Inn4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Zhiyong ; Xue, Jinbo ; Liu, Wei ; Jin, Dairan ; Fu, Xingxin ; Li, Hongli ; Tan, Yixuan ; Cao, Jingtai</creator><creatorcontrib>Wu, Zhiyong ; Xue, Jinbo ; Liu, Wei ; Jin, Dairan ; Fu, Xingxin ; Li, Hongli ; Tan, Yixuan ; Cao, Jingtai</creatorcontrib><description>Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3488073</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive optics ; Atmospheric turbulence ; Atmospheric waves ; Distortion ; Laser radar ; LiDAR ; Optical distortion ; Optical imaging ; Optical receivers ; Optimization ; Polynomials ; Signal to noise ratio ; SPGD optimization algorithm ; wavefront correction</subject><ispartof>IEEE photonics journal, 2024-12, Vol.16 (6), p.1-7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-1485a7bd55d915ae03c58a2d9b787ccd01d48bc14d2f2a50e1980e275a7231f53</cites><orcidid>0000-0001-8078-1879 ; 0009-0008-3404-0218 ; 0000-0002-7925-4905 ; 0000-0002-6527-5502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10738482$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Wu, Zhiyong</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jin, Dairan</creatorcontrib><creatorcontrib>Fu, Xingxin</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Tan, Yixuan</creatorcontrib><creatorcontrib>Cao, Jingtai</creatorcontrib><title>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.</description><subject>Adaptive optics</subject><subject>Atmospheric turbulence</subject><subject>Atmospheric waves</subject><subject>Distortion</subject><subject>Laser radar</subject><subject>LiDAR</subject><subject>Optical distortion</subject><subject>Optical imaging</subject><subject>Optical receivers</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Signal to noise ratio</subject><subject>SPGD optimization algorithm</subject><subject>wavefront correction</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1KAzEQRoMoWKsvIF7sC7Tmdze5rFVrpWjReuFVyCaTGtltJLsVfHt3bSlezccM52M4CF0SPCYEq-vH5cPzakwx5WPGpcQFO0IDojgb4ZwXx4csxCk6a5pPjHNFhBqg96dtDSlYU2Wvod5Wpg1xk0WfLSH5mGqzsZDN668Uv6GGTdufpvEDUp8X4Xbykt2YBlzWUa_L2W02qdYxhfajPkcn3lQNXOznEL3d362mD6PF82w-nSxGlgrVjgiXwhSlE8J1HxnAzAppqFNlIQtrHSaOy9IS7qinRmAgSmKgRQdRRrxgQzTf9bpoPvVXCrVJPzqaoP8WMa21SW2wFWhPaQ4qB19ywUFIVUIOljHgmBvnWddFd102xaZJ4A99BOtetP4TrXvRei-6g652UACAf0DBJJeU_QI0Inn4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wu, Zhiyong</creator><creator>Xue, Jinbo</creator><creator>Liu, Wei</creator><creator>Jin, Dairan</creator><creator>Fu, Xingxin</creator><creator>Li, Hongli</creator><creator>Tan, Yixuan</creator><creator>Cao, Jingtai</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8078-1879</orcidid><orcidid>https://orcid.org/0009-0008-3404-0218</orcidid><orcidid>https://orcid.org/0000-0002-7925-4905</orcidid><orcidid>https://orcid.org/0000-0002-6527-5502</orcidid></search><sort><creationdate>20241201</creationdate><title>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</title><author>Wu, Zhiyong ; Xue, Jinbo ; Liu, Wei ; Jin, Dairan ; Fu, Xingxin ; Li, Hongli ; Tan, Yixuan ; Cao, Jingtai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-1485a7bd55d915ae03c58a2d9b787ccd01d48bc14d2f2a50e1980e275a7231f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optics</topic><topic>Atmospheric turbulence</topic><topic>Atmospheric waves</topic><topic>Distortion</topic><topic>Laser radar</topic><topic>LiDAR</topic><topic>Optical distortion</topic><topic>Optical imaging</topic><topic>Optical receivers</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Signal to noise ratio</topic><topic>SPGD optimization algorithm</topic><topic>wavefront correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhiyong</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jin, Dairan</creatorcontrib><creatorcontrib>Fu, Xingxin</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Tan, Yixuan</creatorcontrib><creatorcontrib>Cao, Jingtai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhiyong</au><au>Xue, Jinbo</au><au>Liu, Wei</au><au>Jin, Dairan</au><au>Fu, Xingxin</au><au>Li, Hongli</au><au>Tan, Yixuan</au><au>Cao, Jingtai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3488073</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8078-1879</orcidid><orcidid>https://orcid.org/0009-0008-3404-0218</orcidid><orcidid>https://orcid.org/0000-0002-7925-4905</orcidid><orcidid>https://orcid.org/0000-0002-6527-5502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2024-12, Vol.16 (6), p.1-7
issn 1943-0655
1943-0647
language eng
recordid cdi_crossref_primary_10_1109_JPHOT_2024_3488073
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive optics
Atmospheric turbulence
Atmospheric waves
Distortion
Laser radar
LiDAR
Optical distortion
Optical imaging
Optical receivers
Optimization
Polynomials
Signal to noise ratio
SPGD optimization algorithm
wavefront correction
title Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Performance%20Improvement%20of%20Coherent%20LiDAR%20Based%20on%20SPGD%20Algorithm&rft.jtitle=IEEE%20photonics%20journal&rft.au=Wu,%20Zhiyong&rft.date=2024-12-01&rft.volume=16&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3488073&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_f226e96efb454e589be6ec33e404adf3%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10738482&rft_doaj_id=oai_doaj_org_article_f226e96efb454e589be6ec33e404adf3&rfr_iscdi=true