Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm
Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coheren...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2024-12, Vol.16 (6), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 16 |
creator | Wu, Zhiyong Xue, Jinbo Liu, Wei Jin, Dairan Fu, Xingxin Li, Hongli Tan, Yixuan Cao, Jingtai |
description | Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively. |
doi_str_mv | 10.1109/JPHOT.2024.3488073 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2024_3488073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10738482</ieee_id><doaj_id>oai_doaj_org_article_f226e96efb454e589be6ec33e404adf3</doaj_id><sourcerecordid>oai_doaj_org_article_f226e96efb454e589be6ec33e404adf3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-1485a7bd55d915ae03c58a2d9b787ccd01d48bc14d2f2a50e1980e275a7231f53</originalsourceid><addsrcrecordid>eNpNkN1KAzEQRoMoWKsvIF7sC7Tmdze5rFVrpWjReuFVyCaTGtltJLsVfHt3bSlezccM52M4CF0SPCYEq-vH5cPzakwx5WPGpcQFO0IDojgb4ZwXx4csxCk6a5pPjHNFhBqg96dtDSlYU2Wvod5Wpg1xk0WfLSH5mGqzsZDN668Uv6GGTdufpvEDUp8X4Xbykt2YBlzWUa_L2W02qdYxhfajPkcn3lQNXOznEL3d362mD6PF82w-nSxGlgrVjgiXwhSlE8J1HxnAzAppqFNlIQtrHSaOy9IS7qinRmAgSmKgRQdRRrxgQzTf9bpoPvVXCrVJPzqaoP8WMa21SW2wFWhPaQ4qB19ywUFIVUIOljHgmBvnWddFd102xaZJ4A99BOtetP4TrXvRei-6g652UACAf0DBJJeU_QI0Inn4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Zhiyong ; Xue, Jinbo ; Liu, Wei ; Jin, Dairan ; Fu, Xingxin ; Li, Hongli ; Tan, Yixuan ; Cao, Jingtai</creator><creatorcontrib>Wu, Zhiyong ; Xue, Jinbo ; Liu, Wei ; Jin, Dairan ; Fu, Xingxin ; Li, Hongli ; Tan, Yixuan ; Cao, Jingtai</creatorcontrib><description>Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3488073</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive optics ; Atmospheric turbulence ; Atmospheric waves ; Distortion ; Laser radar ; LiDAR ; Optical distortion ; Optical imaging ; Optical receivers ; Optimization ; Polynomials ; Signal to noise ratio ; SPGD optimization algorithm ; wavefront correction</subject><ispartof>IEEE photonics journal, 2024-12, Vol.16 (6), p.1-7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-1485a7bd55d915ae03c58a2d9b787ccd01d48bc14d2f2a50e1980e275a7231f53</cites><orcidid>0000-0001-8078-1879 ; 0009-0008-3404-0218 ; 0000-0002-7925-4905 ; 0000-0002-6527-5502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10738482$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Wu, Zhiyong</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jin, Dairan</creatorcontrib><creatorcontrib>Fu, Xingxin</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Tan, Yixuan</creatorcontrib><creatorcontrib>Cao, Jingtai</creatorcontrib><title>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.</description><subject>Adaptive optics</subject><subject>Atmospheric turbulence</subject><subject>Atmospheric waves</subject><subject>Distortion</subject><subject>Laser radar</subject><subject>LiDAR</subject><subject>Optical distortion</subject><subject>Optical imaging</subject><subject>Optical receivers</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Signal to noise ratio</subject><subject>SPGD optimization algorithm</subject><subject>wavefront correction</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1KAzEQRoMoWKsvIF7sC7Tmdze5rFVrpWjReuFVyCaTGtltJLsVfHt3bSlezccM52M4CF0SPCYEq-vH5cPzakwx5WPGpcQFO0IDojgb4ZwXx4csxCk6a5pPjHNFhBqg96dtDSlYU2Wvod5Wpg1xk0WfLSH5mGqzsZDN668Uv6GGTdufpvEDUp8X4Xbykt2YBlzWUa_L2W02qdYxhfajPkcn3lQNXOznEL3d362mD6PF82w-nSxGlgrVjgiXwhSlE8J1HxnAzAppqFNlIQtrHSaOy9IS7qinRmAgSmKgRQdRRrxgQzTf9bpoPvVXCrVJPzqaoP8WMa21SW2wFWhPaQ4qB19ywUFIVUIOljHgmBvnWddFd102xaZJ4A99BOtetP4TrXvRei-6g652UACAf0DBJJeU_QI0Inn4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wu, Zhiyong</creator><creator>Xue, Jinbo</creator><creator>Liu, Wei</creator><creator>Jin, Dairan</creator><creator>Fu, Xingxin</creator><creator>Li, Hongli</creator><creator>Tan, Yixuan</creator><creator>Cao, Jingtai</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8078-1879</orcidid><orcidid>https://orcid.org/0009-0008-3404-0218</orcidid><orcidid>https://orcid.org/0000-0002-7925-4905</orcidid><orcidid>https://orcid.org/0000-0002-6527-5502</orcidid></search><sort><creationdate>20241201</creationdate><title>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</title><author>Wu, Zhiyong ; Xue, Jinbo ; Liu, Wei ; Jin, Dairan ; Fu, Xingxin ; Li, Hongli ; Tan, Yixuan ; Cao, Jingtai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-1485a7bd55d915ae03c58a2d9b787ccd01d48bc14d2f2a50e1980e275a7231f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive optics</topic><topic>Atmospheric turbulence</topic><topic>Atmospheric waves</topic><topic>Distortion</topic><topic>Laser radar</topic><topic>LiDAR</topic><topic>Optical distortion</topic><topic>Optical imaging</topic><topic>Optical receivers</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Signal to noise ratio</topic><topic>SPGD optimization algorithm</topic><topic>wavefront correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhiyong</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jin, Dairan</creatorcontrib><creatorcontrib>Fu, Xingxin</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Tan, Yixuan</creatorcontrib><creatorcontrib>Cao, Jingtai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhiyong</au><au>Xue, Jinbo</au><au>Liu, Wei</au><au>Jin, Dairan</au><au>Fu, Xingxin</au><au>Li, Hongli</au><au>Tan, Yixuan</au><au>Cao, Jingtai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Atmospheric turbulence can significantly impact the effectiveness of light detection and ranging (LiDAR) in long-range detection. A technique for wavefront correction, which is based on the stochastic parallel gradient descent (SPGD) optimization algorithm, is proposed. The method integrates coherent detection theory with adaptive optics technology, effectively mitigating the adverse effects of turbulence. This work evaluates the suitability of the algorithm in coherent LiDAR through theoretical analysis and establishes the necessary theoretical relationships. Through numerical simulation, we assess its optimization ability for Strehl ratio (SR), bit error rate (BER), signal to noise ratio (SNR), and detection distance (DR). We also conduct a comprehensive analysis of the impact of the number of iterations of the algorithm affecting SR, SNR, and DR. This analysis provides robust data support for balancing the performance of the system. The results show that the corrected SR can reach 0.96, 0.88, and 0.75, the SNR can be improved by 7 dB, 16 dB, and 26 dB, and the DR can be improved by 8%, 17%, and 30% in gentle, moderate, and strong turbulence, respectively.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3488073</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8078-1879</orcidid><orcidid>https://orcid.org/0009-0008-3404-0218</orcidid><orcidid>https://orcid.org/0000-0002-7925-4905</orcidid><orcidid>https://orcid.org/0000-0002-6527-5502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2024-12, Vol.16 (6), p.1-7 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2024_3488073 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive optics Atmospheric turbulence Atmospheric waves Distortion Laser radar LiDAR Optical distortion Optical imaging Optical receivers Optimization Polynomials Signal to noise ratio SPGD optimization algorithm wavefront correction |
title | Numerical Simulation of Performance Improvement of Coherent LiDAR Based on SPGD Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Performance%20Improvement%20of%20Coherent%20LiDAR%20Based%20on%20SPGD%20Algorithm&rft.jtitle=IEEE%20photonics%20journal&rft.au=Wu,%20Zhiyong&rft.date=2024-12-01&rft.volume=16&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3488073&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_f226e96efb454e589be6ec33e404adf3%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10738482&rft_doaj_id=oai_doaj_org_article_f226e96efb454e589be6ec33e404adf3&rfr_iscdi=true |