Plasmonic Mode Interference Effect Based Sensors

We propose and theoretically analyze a novel sensor based on plasmonic mode interference in a one-dimensional degenerate n-doped silicon core waveguide. The waveguide supports both, the symmetric- as well as anti-symmetric surface plasmon polaritons (SPPs), with a large propagation constant differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2024-10, Vol.16 (5), p.1-9
Hauptverfasser: Ahlawat, Neha, Pandey, Awanish, Tripathi, Saurabh Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 5
container_start_page 1
container_title IEEE photonics journal
container_volume 16
creator Ahlawat, Neha
Pandey, Awanish
Tripathi, Saurabh Mani
description We propose and theoretically analyze a novel sensor based on plasmonic mode interference in a one-dimensional degenerate n-doped silicon core waveguide. The waveguide supports both, the symmetric- as well as anti-symmetric surface plasmon polaritons (SPPs), with a large propagation constant difference between them, drastically miniaturizing the probe size to \sim100 \mum. Our study reveals that the symmetric plasmonic mode has significant field localization in the sensing region as compared to the anti-symmetric plasmonic mode which has a large field localization in the substrate region. This makes the symmetric SPP considerably more suitable for bio/chemical sensing applications. The core mode projection technique with an optimized transverse offset between the lead-in waveguide and plasmonic waveguide has been used to couple appreciable power into the two SPP modes enhancing the extinction ratio of the transmission spectra. The estimated sensitivity of the sensor is \sim 3400 nm/RIU over biologically relevant refractive indices. Our study demonstrates the effectiveness of plasmonic mode interference in designing highly sensitive bio/chemical sensors with miniaturized probe length through careful design considerations. We also discuss the effect of temperature cross-sensitivity on the performance of the sensor and have presented a sensitivity matrix-based approach for the simultaneous detection of two perturbations using a single sensor probe. We have shown that using this sensitivity-matrix approach, the error associated with the estimated variations in the perturbations is of the order of 10^{-4} to 10^{-3}, making it a powerful tool to estimate simultaneously varying perturbation parameters by tracking multiple resonances.
doi_str_mv 10.1109/JPHOT.2024.3463008
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2024_3463008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10682598</ieee_id><doaj_id>oai_doaj_org_article_6fc721408b744f6ead34a7e78a51f1f5</doaj_id><sourcerecordid>oai_doaj_org_article_6fc721408b744f6ead34a7e78a51f1f5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-5364366135262d9726f9b39204901fa65406642969a34fc21d96961e226f99303</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsFZfQLzIC6TOnibZSy21rVRasF4v282spLSJ7ObGtzc9ULyan2H-D-Zj7JHDiHMwz--r2XI9EiDUSCqUAOUVG3CjZA6oiutL1vqW3aW0BUDDtRkwWO1c2rdN7bOPtqJs3nQUA0VqPGWTEMh32atLVGWf1KQ2pnt2E9wu0cN5DtnX22Q9nuWL5XQ-flnkXmjT5VqikohcaoGiMoXAYDbSCFAGeHCoFSAqYdA4qYIXvOojchKHQyNBDtn8xK1at7U_sd67-GtbV9vjoo3f1sWu9juyGHwhuIJyUygVkFwllSuoKJ3mgQfds8SJ5WObUqRw4XGwB3_26M8e_Nmzv770dCrVRPSvgGX_YCn_ABtDaNI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmonic Mode Interference Effect Based Sensors</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ahlawat, Neha ; Pandey, Awanish ; Tripathi, Saurabh Mani</creator><creatorcontrib>Ahlawat, Neha ; Pandey, Awanish ; Tripathi, Saurabh Mani</creatorcontrib><description><![CDATA[We propose and theoretically analyze a novel sensor based on plasmonic mode interference in a one-dimensional degenerate n-doped silicon core waveguide. The waveguide supports both, the symmetric- as well as anti-symmetric surface plasmon polaritons (SPPs), with a large propagation constant difference between them, drastically miniaturizing the probe size to <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>100 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m. Our study reveals that the symmetric plasmonic mode has significant field localization in the sensing region as compared to the anti-symmetric plasmonic mode which has a large field localization in the substrate region. This makes the symmetric SPP considerably more suitable for bio/chemical sensing applications. The core mode projection technique with an optimized transverse offset between the lead-in waveguide and plasmonic waveguide has been used to couple appreciable power into the two SPP modes enhancing the extinction ratio of the transmission spectra. The estimated sensitivity of the sensor is <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 3400 nm/RIU over biologically relevant refractive indices. Our study demonstrates the effectiveness of plasmonic mode interference in designing highly sensitive bio/chemical sensors with miniaturized probe length through careful design considerations. We also discuss the effect of temperature cross-sensitivity on the performance of the sensor and have presented a sensitivity matrix-based approach for the simultaneous detection of two perturbations using a single sensor probe. We have shown that using this sensitivity-matrix approach, the error associated with the estimated variations in the perturbations is of the order of 10<inline-formula><tex-math notation="LaTeX">^{-4}</tex-math></inline-formula> to 10<inline-formula><tex-math notation="LaTeX">^{-3}</tex-math></inline-formula>, making it a powerful tool to estimate simultaneously varying perturbation parameters by tracking multiple resonances.]]></description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3463008</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>bio-sensor ; Biosensors ; Lead ; Metals ; modal interference ; Optical waveguides ; Plasmonic sensor ; Plasmons ; Sensors ; Silicon ; simultaneous sensing ; temperature insensitive sensor</subject><ispartof>IEEE photonics journal, 2024-10, Vol.16 (5), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-5364366135262d9726f9b39204901fa65406642969a34fc21d96961e226f99303</cites><orcidid>0009-0005-8730-0325 ; 0009-0001-8316-5518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10682598$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Ahlawat, Neha</creatorcontrib><creatorcontrib>Pandey, Awanish</creatorcontrib><creatorcontrib>Tripathi, Saurabh Mani</creatorcontrib><title>Plasmonic Mode Interference Effect Based Sensors</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description><![CDATA[We propose and theoretically analyze a novel sensor based on plasmonic mode interference in a one-dimensional degenerate n-doped silicon core waveguide. The waveguide supports both, the symmetric- as well as anti-symmetric surface plasmon polaritons (SPPs), with a large propagation constant difference between them, drastically miniaturizing the probe size to <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>100 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m. Our study reveals that the symmetric plasmonic mode has significant field localization in the sensing region as compared to the anti-symmetric plasmonic mode which has a large field localization in the substrate region. This makes the symmetric SPP considerably more suitable for bio/chemical sensing applications. The core mode projection technique with an optimized transverse offset between the lead-in waveguide and plasmonic waveguide has been used to couple appreciable power into the two SPP modes enhancing the extinction ratio of the transmission spectra. The estimated sensitivity of the sensor is <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 3400 nm/RIU over biologically relevant refractive indices. Our study demonstrates the effectiveness of plasmonic mode interference in designing highly sensitive bio/chemical sensors with miniaturized probe length through careful design considerations. We also discuss the effect of temperature cross-sensitivity on the performance of the sensor and have presented a sensitivity matrix-based approach for the simultaneous detection of two perturbations using a single sensor probe. We have shown that using this sensitivity-matrix approach, the error associated with the estimated variations in the perturbations is of the order of 10<inline-formula><tex-math notation="LaTeX">^{-4}</tex-math></inline-formula> to 10<inline-formula><tex-math notation="LaTeX">^{-3}</tex-math></inline-formula>, making it a powerful tool to estimate simultaneously varying perturbation parameters by tracking multiple resonances.]]></description><subject>bio-sensor</subject><subject>Biosensors</subject><subject>Lead</subject><subject>Metals</subject><subject>modal interference</subject><subject>Optical waveguides</subject><subject>Plasmonic sensor</subject><subject>Plasmons</subject><subject>Sensors</subject><subject>Silicon</subject><subject>simultaneous sensing</subject><subject>temperature insensitive sensor</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNtKw0AQhhdRsFZfQLzIC6TOnibZSy21rVRasF4v282spLSJ7ObGtzc9ULyan2H-D-Zj7JHDiHMwz--r2XI9EiDUSCqUAOUVG3CjZA6oiutL1vqW3aW0BUDDtRkwWO1c2rdN7bOPtqJs3nQUA0VqPGWTEMh32atLVGWf1KQ2pnt2E9wu0cN5DtnX22Q9nuWL5XQ-flnkXmjT5VqikohcaoGiMoXAYDbSCFAGeHCoFSAqYdA4qYIXvOojchKHQyNBDtn8xK1at7U_sd67-GtbV9vjoo3f1sWu9juyGHwhuIJyUygVkFwllSuoKJ3mgQfds8SJ5WObUqRw4XGwB3_26M8e_Nmzv770dCrVRPSvgGX_YCn_ABtDaNI</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ahlawat, Neha</creator><creator>Pandey, Awanish</creator><creator>Tripathi, Saurabh Mani</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-8730-0325</orcidid><orcidid>https://orcid.org/0009-0001-8316-5518</orcidid></search><sort><creationdate>20241001</creationdate><title>Plasmonic Mode Interference Effect Based Sensors</title><author>Ahlawat, Neha ; Pandey, Awanish ; Tripathi, Saurabh Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-5364366135262d9726f9b39204901fa65406642969a34fc21d96961e226f99303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bio-sensor</topic><topic>Biosensors</topic><topic>Lead</topic><topic>Metals</topic><topic>modal interference</topic><topic>Optical waveguides</topic><topic>Plasmonic sensor</topic><topic>Plasmons</topic><topic>Sensors</topic><topic>Silicon</topic><topic>simultaneous sensing</topic><topic>temperature insensitive sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahlawat, Neha</creatorcontrib><creatorcontrib>Pandey, Awanish</creatorcontrib><creatorcontrib>Tripathi, Saurabh Mani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahlawat, Neha</au><au>Pandey, Awanish</au><au>Tripathi, Saurabh Mani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Mode Interference Effect Based Sensors</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract><![CDATA[We propose and theoretically analyze a novel sensor based on plasmonic mode interference in a one-dimensional degenerate n-doped silicon core waveguide. The waveguide supports both, the symmetric- as well as anti-symmetric surface plasmon polaritons (SPPs), with a large propagation constant difference between them, drastically miniaturizing the probe size to <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>100 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m. Our study reveals that the symmetric plasmonic mode has significant field localization in the sensing region as compared to the anti-symmetric plasmonic mode which has a large field localization in the substrate region. This makes the symmetric SPP considerably more suitable for bio/chemical sensing applications. The core mode projection technique with an optimized transverse offset between the lead-in waveguide and plasmonic waveguide has been used to couple appreciable power into the two SPP modes enhancing the extinction ratio of the transmission spectra. The estimated sensitivity of the sensor is <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 3400 nm/RIU over biologically relevant refractive indices. Our study demonstrates the effectiveness of plasmonic mode interference in designing highly sensitive bio/chemical sensors with miniaturized probe length through careful design considerations. We also discuss the effect of temperature cross-sensitivity on the performance of the sensor and have presented a sensitivity matrix-based approach for the simultaneous detection of two perturbations using a single sensor probe. We have shown that using this sensitivity-matrix approach, the error associated with the estimated variations in the perturbations is of the order of 10<inline-formula><tex-math notation="LaTeX">^{-4}</tex-math></inline-formula> to 10<inline-formula><tex-math notation="LaTeX">^{-3}</tex-math></inline-formula>, making it a powerful tool to estimate simultaneously varying perturbation parameters by tracking multiple resonances.]]></abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3463008</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0005-8730-0325</orcidid><orcidid>https://orcid.org/0009-0001-8316-5518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2024-10, Vol.16 (5), p.1-9
issn 1943-0655
1943-0647
language eng
recordid cdi_crossref_primary_10_1109_JPHOT_2024_3463008
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects bio-sensor
Biosensors
Lead
Metals
modal interference
Optical waveguides
Plasmonic sensor
Plasmons
Sensors
Silicon
simultaneous sensing
temperature insensitive sensor
title Plasmonic Mode Interference Effect Based Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Mode%20Interference%20Effect%20Based%20Sensors&rft.jtitle=IEEE%20photonics%20journal&rft.au=Ahlawat,%20Neha&rft.date=2024-10-01&rft.volume=16&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3463008&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_6fc721408b744f6ead34a7e78a51f1f5%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10682598&rft_doaj_id=oai_doaj_org_article_6fc721408b744f6ead34a7e78a51f1f5&rfr_iscdi=true