Optical gain in AlGaN quantum wells: impact of higher energy states
Simulations of optical gain in aluminum gallium nitride (AlGaN) quantum wells are extended to the high charge carrier density regime required for achieving gain at 275 nm for UV laser diodes. Coulomb interaction is modeled using the 2nd Born approximation. We demonstrate good agreement with experime...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2024-04, Vol.16 (2), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 16 |
creator | Kolle, Sebastian Romer, Friedhard Cardinali, Giulia Schulz, Alexander Susilo, Norman Vidal, Daniel Hauer Wernicke, Tim Kneissl, Michael Witzigmann, Bernd |
description | Simulations of optical gain in aluminum gallium nitride (AlGaN) quantum wells are extended to the high charge carrier density regime required for achieving gain at 275 nm for UV laser diodes. Coulomb interaction is modeled using the 2nd Born approximation. We demonstrate good agreement with experimental data obtained through optical pumping, and predict gain spectra for electrical pumping. Special consideration is given to the contribution of higher bands in wide quantum wells. |
doi_str_mv | 10.1109/JPHOT.2024.3379231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2024_3379231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475434</ieee_id><doaj_id>oai_doaj_org_article_241caad433a548e98ddc80a493c75a84</doaj_id><sourcerecordid>3040053769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-796fb1e3c3ba661ab8f2c79eb97cba71327b936457d2ebe1632c7b417f93b9523</originalsourceid><addsrcrecordid>eNpNUE1LAzEQXURBrf4B8RDw3Jpk8rHxJsVPivWg5zDJztYt225Ntoj_3tWKCAMzzLz3ZuYVxZngEyG4u3x8vp-_TCSXagJgnQSxVxwJp2DMjbL7f7XWh8VxzkvOjRPaHRXT-aZvIrZsgc2aDXHd3uETe9_iut-u2Ae1bb5izWqDsWddzd6axRslRmtKi0-We-wpnxQHNbaZTn_zqHi9vXmZ3o9n87uH6fVsHBU3_dg6UwdBECGgMQJDWctoHQVnY0ArQNrgwChtK0mBhIFhHJSwtYPgtIRR8bDTrTpc-k1qVpg-fYeN_2l0aeExDd-05KUSEbFSAKhVSa6sqlhyVA6i1ViqQetip7VJ3fuWcu-X3Tath_M9cMW5BmvcgJI7VExdzonqv62C-2_j_Y_x_tt4_2v8QDrfkRoi-kdQVitQ8AWAL32h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040053769</pqid></control><display><type>article</type><title>Optical gain in AlGaN quantum wells: impact of higher energy states</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kolle, Sebastian ; Romer, Friedhard ; Cardinali, Giulia ; Schulz, Alexander ; Susilo, Norman ; Vidal, Daniel Hauer ; Wernicke, Tim ; Kneissl, Michael ; Witzigmann, Bernd</creator><creatorcontrib>Kolle, Sebastian ; Romer, Friedhard ; Cardinali, Giulia ; Schulz, Alexander ; Susilo, Norman ; Vidal, Daniel Hauer ; Wernicke, Tim ; Kneissl, Michael ; Witzigmann, Bernd</creatorcontrib><description>Simulations of optical gain in aluminum gallium nitride (AlGaN) quantum wells are extended to the high charge carrier density regime required for achieving gain at 275 nm for UV laser diodes. Coulomb interaction is modeled using the 2nd Born approximation. We demonstrate good agreement with experimental data obtained through optical pumping, and predict gain spectra for electrical pumping. Special consideration is given to the contribution of higher bands in wide quantum wells.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3379231</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitrides ; Born approximation ; Carrier density ; Charge carrier density ; Current carriers ; Optical pumping ; Optical waveguides ; Optoelectronic devices ; Quantum well lasers ; Quantum wells ; Scattering ; Semiconductor lasers ; Simulation ; Stimulated emission ; Ultraviolet lasers ; Wide band gap semiconductors</subject><ispartof>IEEE photonics journal, 2024-04, Vol.16 (2), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-796fb1e3c3ba661ab8f2c79eb97cba71327b936457d2ebe1632c7b417f93b9523</citedby><cites>FETCH-LOGICAL-c406t-796fb1e3c3ba661ab8f2c79eb97cba71327b936457d2ebe1632c7b417f93b9523</cites><orcidid>0000-0002-5472-8166 ; 0009-0005-2236-9778 ; 0009-0007-3708-960X ; 0000-0002-5583-629X ; 0009-0000-6736-2100 ; 0009-0001-5665-0083 ; 0000-0003-1476-598X ; 0000-0002-1375-4376 ; 0000-0001-9705-9516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475434$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Kolle, Sebastian</creatorcontrib><creatorcontrib>Romer, Friedhard</creatorcontrib><creatorcontrib>Cardinali, Giulia</creatorcontrib><creatorcontrib>Schulz, Alexander</creatorcontrib><creatorcontrib>Susilo, Norman</creatorcontrib><creatorcontrib>Vidal, Daniel Hauer</creatorcontrib><creatorcontrib>Wernicke, Tim</creatorcontrib><creatorcontrib>Kneissl, Michael</creatorcontrib><creatorcontrib>Witzigmann, Bernd</creatorcontrib><title>Optical gain in AlGaN quantum wells: impact of higher energy states</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Simulations of optical gain in aluminum gallium nitride (AlGaN) quantum wells are extended to the high charge carrier density regime required for achieving gain at 275 nm for UV laser diodes. Coulomb interaction is modeled using the 2nd Born approximation. We demonstrate good agreement with experimental data obtained through optical pumping, and predict gain spectra for electrical pumping. Special consideration is given to the contribution of higher bands in wide quantum wells.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Born approximation</subject><subject>Carrier density</subject><subject>Charge carrier density</subject><subject>Current carriers</subject><subject>Optical pumping</subject><subject>Optical waveguides</subject><subject>Optoelectronic devices</subject><subject>Quantum well lasers</subject><subject>Quantum wells</subject><subject>Scattering</subject><subject>Semiconductor lasers</subject><subject>Simulation</subject><subject>Stimulated emission</subject><subject>Ultraviolet lasers</subject><subject>Wide band gap semiconductors</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQXURBrf4B8RDw3Jpk8rHxJsVPivWg5zDJztYt225Ntoj_3tWKCAMzzLz3ZuYVxZngEyG4u3x8vp-_TCSXagJgnQSxVxwJp2DMjbL7f7XWh8VxzkvOjRPaHRXT-aZvIrZsgc2aDXHd3uETe9_iut-u2Ae1bb5izWqDsWddzd6axRslRmtKi0-We-wpnxQHNbaZTn_zqHi9vXmZ3o9n87uH6fVsHBU3_dg6UwdBECGgMQJDWctoHQVnY0ArQNrgwChtK0mBhIFhHJSwtYPgtIRR8bDTrTpc-k1qVpg-fYeN_2l0aeExDd-05KUSEbFSAKhVSa6sqlhyVA6i1ViqQetip7VJ3fuWcu-X3Tath_M9cMW5BmvcgJI7VExdzonqv62C-2_j_Y_x_tt4_2v8QDrfkRoi-kdQVitQ8AWAL32h</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Kolle, Sebastian</creator><creator>Romer, Friedhard</creator><creator>Cardinali, Giulia</creator><creator>Schulz, Alexander</creator><creator>Susilo, Norman</creator><creator>Vidal, Daniel Hauer</creator><creator>Wernicke, Tim</creator><creator>Kneissl, Michael</creator><creator>Witzigmann, Bernd</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5472-8166</orcidid><orcidid>https://orcid.org/0009-0005-2236-9778</orcidid><orcidid>https://orcid.org/0009-0007-3708-960X</orcidid><orcidid>https://orcid.org/0000-0002-5583-629X</orcidid><orcidid>https://orcid.org/0009-0000-6736-2100</orcidid><orcidid>https://orcid.org/0009-0001-5665-0083</orcidid><orcidid>https://orcid.org/0000-0003-1476-598X</orcidid><orcidid>https://orcid.org/0000-0002-1375-4376</orcidid><orcidid>https://orcid.org/0000-0001-9705-9516</orcidid></search><sort><creationdate>20240401</creationdate><title>Optical gain in AlGaN quantum wells: impact of higher energy states</title><author>Kolle, Sebastian ; Romer, Friedhard ; Cardinali, Giulia ; Schulz, Alexander ; Susilo, Norman ; Vidal, Daniel Hauer ; Wernicke, Tim ; Kneissl, Michael ; Witzigmann, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-796fb1e3c3ba661ab8f2c79eb97cba71327b936457d2ebe1632c7b417f93b9523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Born approximation</topic><topic>Carrier density</topic><topic>Charge carrier density</topic><topic>Current carriers</topic><topic>Optical pumping</topic><topic>Optical waveguides</topic><topic>Optoelectronic devices</topic><topic>Quantum well lasers</topic><topic>Quantum wells</topic><topic>Scattering</topic><topic>Semiconductor lasers</topic><topic>Simulation</topic><topic>Stimulated emission</topic><topic>Ultraviolet lasers</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolle, Sebastian</creatorcontrib><creatorcontrib>Romer, Friedhard</creatorcontrib><creatorcontrib>Cardinali, Giulia</creatorcontrib><creatorcontrib>Schulz, Alexander</creatorcontrib><creatorcontrib>Susilo, Norman</creatorcontrib><creatorcontrib>Vidal, Daniel Hauer</creatorcontrib><creatorcontrib>Wernicke, Tim</creatorcontrib><creatorcontrib>Kneissl, Michael</creatorcontrib><creatorcontrib>Witzigmann, Bernd</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolle, Sebastian</au><au>Romer, Friedhard</au><au>Cardinali, Giulia</au><au>Schulz, Alexander</au><au>Susilo, Norman</au><au>Vidal, Daniel Hauer</au><au>Wernicke, Tim</au><au>Kneissl, Michael</au><au>Witzigmann, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical gain in AlGaN quantum wells: impact of higher energy states</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Simulations of optical gain in aluminum gallium nitride (AlGaN) quantum wells are extended to the high charge carrier density regime required for achieving gain at 275 nm for UV laser diodes. Coulomb interaction is modeled using the 2nd Born approximation. We demonstrate good agreement with experimental data obtained through optical pumping, and predict gain spectra for electrical pumping. Special consideration is given to the contribution of higher bands in wide quantum wells.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3379231</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5472-8166</orcidid><orcidid>https://orcid.org/0009-0005-2236-9778</orcidid><orcidid>https://orcid.org/0009-0007-3708-960X</orcidid><orcidid>https://orcid.org/0000-0002-5583-629X</orcidid><orcidid>https://orcid.org/0009-0000-6736-2100</orcidid><orcidid>https://orcid.org/0009-0001-5665-0083</orcidid><orcidid>https://orcid.org/0000-0003-1476-598X</orcidid><orcidid>https://orcid.org/0000-0002-1375-4376</orcidid><orcidid>https://orcid.org/0000-0001-9705-9516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2024-04, Vol.16 (2), p.1-5 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2024_3379231 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aluminum gallium nitride Aluminum gallium nitrides Born approximation Carrier density Charge carrier density Current carriers Optical pumping Optical waveguides Optoelectronic devices Quantum well lasers Quantum wells Scattering Semiconductor lasers Simulation Stimulated emission Ultraviolet lasers Wide band gap semiconductors |
title | Optical gain in AlGaN quantum wells: impact of higher energy states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20gain%20in%20AlGaN%20quantum%20wells:%20impact%20of%20higher%20energy%20states&rft.jtitle=IEEE%20photonics%20journal&rft.au=Kolle,%20Sebastian&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3379231&rft_dat=%3Cproquest_cross%3E3040053769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040053769&rft_id=info:pmid/&rft_ieee_id=10475434&rft_doaj_id=oai_doaj_org_article_241caad433a548e98ddc80a493c75a84&rfr_iscdi=true |