Single pixel imaging based on generative adversarial network optimized with multiple prior information

Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2022-08, Vol.14 (4), p.1-10
Hauptverfasser: Sun, Shida, Yan, Qiurong, Zheng, Yongjian, Wei, Zhen, Lin, Jian, Cai, Yilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title IEEE photonics journal
container_volume 14
creator Sun, Shida
Yan, Qiurong
Zheng, Yongjian
Wei, Zhen
Lin, Jian
Cai, Yilin
description Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.
doi_str_mv 10.1109/JPHOT.2022.3184947
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2022_3184947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9803047</ieee_id><doaj_id>oai_doaj_org_article_c3ab959a2190449bb01285ddc48e0a72</doaj_id><sourcerecordid>2685161515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgnP4BfQn4vJnPtnkUUTcRJjifQ5rczMy2mWm3qb_ezIn4cLmf59wDJ8vOCR4TguXVw9NkNh9TTOmYkZJLXhxkAyI5G-FciMN_9XF20nVLjHNJhBxk7tm3ixrQyn9AjXyjF6lHle7AotCiBbQQde83gLTdQOx09LpGLfTbEN9QWPW-8V_pduv7V9Ss696vdmzRh4h860JsEjq0p9mR03UHZ795mL3c3c5vJqPH2f305vpxZDgW_UhYqznYkppKEIpzRwtTMGdMyVhZ8IqKglMsrdMpoHAV5MApw9ZyVjEn2DCb7nlt0EuVZDQ6fqqgvfoZhLhQOvbe1KAM05UUUlMiMeeyqjChZRJgeAlYFzRxXe65VjG8r6Hr1TKsY5vkK5qXguREkN1Hur8yMXRdBPf3lWC180b9eKN23qhfbxLoYg_yAPAHkCVmOG2_AUx5jMU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685161515</pqid></control><display><type>article</type><title>Single pixel imaging based on generative adversarial network optimized with multiple prior information</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Shida ; Yan, Qiurong ; Zheng, Yongjian ; Wei, Zhen ; Lin, Jian ; Cai, Yilin</creator><creatorcontrib>Sun, Shida ; Yan, Qiurong ; Zheng, Yongjian ; Wei, Zhen ; Lin, Jian ; Cai, Yilin</creatorcontrib><description>Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2022.3184947</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Compressed sensing (CS) ; Deep learning ; Generative adversarial networks ; Generative Adversarial Networks (GAN) ; Generators ; Image coding ; Image compression ; Image processing ; Image quality ; Image reconstruction ; Imaging ; Iterative methods ; Loss measurement ; Machine learning ; Model accuracy ; Multiple prior information ; Photon counting ; Pixels ; Regularization ; Single pixel imaging (SPI) system ; Training</subject><ispartof>IEEE photonics journal, 2022-08, Vol.14 (4), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</citedby><cites>FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</cites><orcidid>0000-0003-4736-7435 ; 0000-0002-9163-7175 ; 0000-0002-8974-334X ; 0000-0002-8237-7607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9803047$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27638,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Sun, Shida</creatorcontrib><creatorcontrib>Yan, Qiurong</creatorcontrib><creatorcontrib>Zheng, Yongjian</creatorcontrib><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Cai, Yilin</creatorcontrib><title>Single pixel imaging based on generative adversarial network optimized with multiple prior information</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.</description><subject>Compressed sensing (CS)</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Generative Adversarial Networks (GAN)</subject><subject>Generators</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Loss measurement</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Multiple prior information</subject><subject>Photon counting</subject><subject>Pixels</subject><subject>Regularization</subject><subject>Single pixel imaging (SPI) system</subject><subject>Training</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgnP4BfQn4vJnPtnkUUTcRJjifQ5rczMy2mWm3qb_ezIn4cLmf59wDJ8vOCR4TguXVw9NkNh9TTOmYkZJLXhxkAyI5G-FciMN_9XF20nVLjHNJhBxk7tm3ixrQyn9AjXyjF6lHle7AotCiBbQQde83gLTdQOx09LpGLfTbEN9QWPW-8V_pduv7V9Ss696vdmzRh4h860JsEjq0p9mR03UHZ795mL3c3c5vJqPH2f305vpxZDgW_UhYqznYkppKEIpzRwtTMGdMyVhZ8IqKglMsrdMpoHAV5MApw9ZyVjEn2DCb7nlt0EuVZDQ6fqqgvfoZhLhQOvbe1KAM05UUUlMiMeeyqjChZRJgeAlYFzRxXe65VjG8r6Hr1TKsY5vkK5qXguREkN1Hur8yMXRdBPf3lWC180b9eKN23qhfbxLoYg_yAPAHkCVmOG2_AUx5jMU</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sun, Shida</creator><creator>Yan, Qiurong</creator><creator>Zheng, Yongjian</creator><creator>Wei, Zhen</creator><creator>Lin, Jian</creator><creator>Cai, Yilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4736-7435</orcidid><orcidid>https://orcid.org/0000-0002-9163-7175</orcidid><orcidid>https://orcid.org/0000-0002-8974-334X</orcidid><orcidid>https://orcid.org/0000-0002-8237-7607</orcidid></search><sort><creationdate>20220801</creationdate><title>Single pixel imaging based on generative adversarial network optimized with multiple prior information</title><author>Sun, Shida ; Yan, Qiurong ; Zheng, Yongjian ; Wei, Zhen ; Lin, Jian ; Cai, Yilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compressed sensing (CS)</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Generative Adversarial Networks (GAN)</topic><topic>Generators</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Loss measurement</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Multiple prior information</topic><topic>Photon counting</topic><topic>Pixels</topic><topic>Regularization</topic><topic>Single pixel imaging (SPI) system</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shida</creatorcontrib><creatorcontrib>Yan, Qiurong</creatorcontrib><creatorcontrib>Zheng, Yongjian</creatorcontrib><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Cai, Yilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shida</au><au>Yan, Qiurong</au><au>Zheng, Yongjian</au><au>Wei, Zhen</au><au>Lin, Jian</au><au>Cai, Yilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single pixel imaging based on generative adversarial network optimized with multiple prior information</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2022.3184947</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4736-7435</orcidid><orcidid>https://orcid.org/0000-0002-9163-7175</orcidid><orcidid>https://orcid.org/0000-0002-8974-334X</orcidid><orcidid>https://orcid.org/0000-0002-8237-7607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2022-08, Vol.14 (4), p.1-10
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_crossref_primary_10_1109_JPHOT_2022_3184947
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Compressed sensing (CS)
Deep learning
Generative adversarial networks
Generative Adversarial Networks (GAN)
Generators
Image coding
Image compression
Image processing
Image quality
Image reconstruction
Imaging
Iterative methods
Loss measurement
Machine learning
Model accuracy
Multiple prior information
Photon counting
Pixels
Regularization
Single pixel imaging (SPI) system
Training
title Single pixel imaging based on generative adversarial network optimized with multiple prior information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20pixel%20imaging%20based%20on%20generative%20adversarial%20network%20optimized%20with%20multiple%20prior%20information&rft.jtitle=IEEE%20photonics%20journal&rft.au=Sun,%20Shida&rft.date=2022-08-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2022.3184947&rft_dat=%3Cproquest_cross%3E2685161515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685161515&rft_id=info:pmid/&rft_ieee_id=9803047&rft_doaj_id=oai_doaj_org_article_c3ab959a2190449bb01285ddc48e0a72&rfr_iscdi=true