Single pixel imaging based on generative adversarial network optimized with multiple prior information
Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction res...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2022-08, Vol.14 (4), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 14 |
creator | Sun, Shida Yan, Qiurong Zheng, Yongjian Wei, Zhen Lin, Jian Cai, Yilin |
description | Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network. |
doi_str_mv | 10.1109/JPHOT.2022.3184947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2022_3184947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9803047</ieee_id><doaj_id>oai_doaj_org_article_c3ab959a2190449bb01285ddc48e0a72</doaj_id><sourcerecordid>2685161515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgnP4BfQn4vJnPtnkUUTcRJjifQ5rczMy2mWm3qb_ezIn4cLmf59wDJ8vOCR4TguXVw9NkNh9TTOmYkZJLXhxkAyI5G-FciMN_9XF20nVLjHNJhBxk7tm3ixrQyn9AjXyjF6lHle7AotCiBbQQde83gLTdQOx09LpGLfTbEN9QWPW-8V_pduv7V9Ss696vdmzRh4h860JsEjq0p9mR03UHZ795mL3c3c5vJqPH2f305vpxZDgW_UhYqznYkppKEIpzRwtTMGdMyVhZ8IqKglMsrdMpoHAV5MApw9ZyVjEn2DCb7nlt0EuVZDQ6fqqgvfoZhLhQOvbe1KAM05UUUlMiMeeyqjChZRJgeAlYFzRxXe65VjG8r6Hr1TKsY5vkK5qXguREkN1Hur8yMXRdBPf3lWC180b9eKN23qhfbxLoYg_yAPAHkCVmOG2_AUx5jMU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685161515</pqid></control><display><type>article</type><title>Single pixel imaging based on generative adversarial network optimized with multiple prior information</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Shida ; Yan, Qiurong ; Zheng, Yongjian ; Wei, Zhen ; Lin, Jian ; Cai, Yilin</creator><creatorcontrib>Sun, Shida ; Yan, Qiurong ; Zheng, Yongjian ; Wei, Zhen ; Lin, Jian ; Cai, Yilin</creatorcontrib><description>Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2022.3184947</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Compressed sensing (CS) ; Deep learning ; Generative adversarial networks ; Generative Adversarial Networks (GAN) ; Generators ; Image coding ; Image compression ; Image processing ; Image quality ; Image reconstruction ; Imaging ; Iterative methods ; Loss measurement ; Machine learning ; Model accuracy ; Multiple prior information ; Photon counting ; Pixels ; Regularization ; Single pixel imaging (SPI) system ; Training</subject><ispartof>IEEE photonics journal, 2022-08, Vol.14 (4), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</citedby><cites>FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</cites><orcidid>0000-0003-4736-7435 ; 0000-0002-9163-7175 ; 0000-0002-8974-334X ; 0000-0002-8237-7607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9803047$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27638,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Sun, Shida</creatorcontrib><creatorcontrib>Yan, Qiurong</creatorcontrib><creatorcontrib>Zheng, Yongjian</creatorcontrib><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Cai, Yilin</creatorcontrib><title>Single pixel imaging based on generative adversarial network optimized with multiple prior information</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.</description><subject>Compressed sensing (CS)</subject><subject>Deep learning</subject><subject>Generative adversarial networks</subject><subject>Generative Adversarial Networks (GAN)</subject><subject>Generators</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>Loss measurement</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Multiple prior information</subject><subject>Photon counting</subject><subject>Pixels</subject><subject>Regularization</subject><subject>Single pixel imaging (SPI) system</subject><subject>Training</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgnP4BfQn4vJnPtnkUUTcRJjifQ5rczMy2mWm3qb_ezIn4cLmf59wDJ8vOCR4TguXVw9NkNh9TTOmYkZJLXhxkAyI5G-FciMN_9XF20nVLjHNJhBxk7tm3ixrQyn9AjXyjF6lHle7AotCiBbQQde83gLTdQOx09LpGLfTbEN9QWPW-8V_pduv7V9Ss696vdmzRh4h860JsEjq0p9mR03UHZ795mL3c3c5vJqPH2f305vpxZDgW_UhYqznYkppKEIpzRwtTMGdMyVhZ8IqKglMsrdMpoHAV5MApw9ZyVjEn2DCb7nlt0EuVZDQ6fqqgvfoZhLhQOvbe1KAM05UUUlMiMeeyqjChZRJgeAlYFzRxXe65VjG8r6Hr1TKsY5vkK5qXguREkN1Hur8yMXRdBPf3lWC180b9eKN23qhfbxLoYg_yAPAHkCVmOG2_AUx5jMU</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sun, Shida</creator><creator>Yan, Qiurong</creator><creator>Zheng, Yongjian</creator><creator>Wei, Zhen</creator><creator>Lin, Jian</creator><creator>Cai, Yilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4736-7435</orcidid><orcidid>https://orcid.org/0000-0002-9163-7175</orcidid><orcidid>https://orcid.org/0000-0002-8974-334X</orcidid><orcidid>https://orcid.org/0000-0002-8237-7607</orcidid></search><sort><creationdate>20220801</creationdate><title>Single pixel imaging based on generative adversarial network optimized with multiple prior information</title><author>Sun, Shida ; Yan, Qiurong ; Zheng, Yongjian ; Wei, Zhen ; Lin, Jian ; Cai, Yilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5dda4ed82cb51206f27c73fcc833874b2574209dfa9dfe7fbe6e4230dd43b3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compressed sensing (CS)</topic><topic>Deep learning</topic><topic>Generative adversarial networks</topic><topic>Generative Adversarial Networks (GAN)</topic><topic>Generators</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>Loss measurement</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Multiple prior information</topic><topic>Photon counting</topic><topic>Pixels</topic><topic>Regularization</topic><topic>Single pixel imaging (SPI) system</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shida</creatorcontrib><creatorcontrib>Yan, Qiurong</creatorcontrib><creatorcontrib>Zheng, Yongjian</creatorcontrib><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Cai, Yilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shida</au><au>Yan, Qiurong</au><au>Zheng, Yongjian</au><au>Wei, Zhen</au><au>Lin, Jian</au><au>Cai, Yilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single pixel imaging based on generative adversarial network optimized with multiple prior information</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Reconstructing high-quality images at low measurement rate is one of the research objectives for single-pixel imaging (SPI). Deep learning based compressed reconstruction methods have been shown to avoid the huge iterative computation of traditional methods, while achieving better reconstruction results. Benefiting from improved modeling capabilities under the constant game of generation and identification, Generative Adversarial Networks (GANs) has achieved great success in image generation and reconstruction. In this paper, we propose a GAN-based compression reconstruction network, MPIGAN. In order to obtain multiple prior information from the dataset and thus improving the accuracy of the model, multiple Autoencoders are trained as regularization terms to be added to the loss function of the generative network, and then adversarial training is performed with a multi-label classification network. Experimental results show that our scheme can significantly improve reconstruction quality at a very low measurement rate, and reconstruction results are better than the existing network.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2022.3184947</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4736-7435</orcidid><orcidid>https://orcid.org/0000-0002-9163-7175</orcidid><orcidid>https://orcid.org/0000-0002-8974-334X</orcidid><orcidid>https://orcid.org/0000-0002-8237-7607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2022-08, Vol.14 (4), p.1-10 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2022_3184947 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Compressed sensing (CS) Deep learning Generative adversarial networks Generative Adversarial Networks (GAN) Generators Image coding Image compression Image processing Image quality Image reconstruction Imaging Iterative methods Loss measurement Machine learning Model accuracy Multiple prior information Photon counting Pixels Regularization Single pixel imaging (SPI) system Training |
title | Single pixel imaging based on generative adversarial network optimized with multiple prior information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20pixel%20imaging%20based%20on%20generative%20adversarial%20network%20optimized%20with%20multiple%20prior%20information&rft.jtitle=IEEE%20photonics%20journal&rft.au=Sun,%20Shida&rft.date=2022-08-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2022.3184947&rft_dat=%3Cproquest_cross%3E2685161515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685161515&rft_id=info:pmid/&rft_ieee_id=9803047&rft_doaj_id=oai_doaj_org_article_c3ab959a2190449bb01285ddc48e0a72&rfr_iscdi=true |