Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser

We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2017-04, Vol.9 (2), p.1-9
Hauptverfasser: Fan, Mengqiu, Zon, Zhaoyu, Tian, Xiaocheng, Xu, Dangpeng, Zhou, Dandan, Zhang, Rui, Zhu, Na, Xie, Lianghua, Li, Hongxun, Su, Jingqin, Zhu, Qihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2
container_start_page 1
container_title IEEE photonics journal
container_volume 9
creator Fan, Mengqiu
Zon, Zhaoyu
Tian, Xiaocheng
Xu, Dangpeng
Zhou, Dandan
Zhang, Rui
Zhu, Na
Xie, Lianghua
Li, Hongxun
Su, Jingqin
Zhu, Qihua
description We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.
doi_str_mv 10.1109/JPHOT.2017.2669485
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2017_2669485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7856972</ieee_id><doaj_id>oai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79</doaj_id><sourcerecordid>oai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</originalsourceid><addsrcrecordid>eNo9kN1OAjEQRjdGExF9Ab3pCyz2d7u9NCiCIYEY7pvudopFdkva1cS38Vl8MlkgXM2XSb6TmZNl9wSPCMHq8W05XaxGFBM5okWheCkusgFRnOW44PLynIW4zm5S2mBcKCLUIFuOQ7OL8AFt8t-AZu03pM6vTedDm1BoEcGC_f22DXo3rQ0Nevapi7766sCiCYCtTP2JJr6CiOYmQbzNrpzZJrg7zWG2mrysxtN8vnidjZ_mec2k7HJGrFPc7Y9zjtDCVg4zyTlIyg0G4ayzpaPcGumswFgUjjMsgXBREEUVG2azI9YGs9G76BsTf3QwXh8WIa61iZ2vt6ArXmIpZOlqWvOKQdm_DkpwQ4irZc-iR1YdQ0oR3JlHsO716oNe3evVJ7370sOx5AHgXJClKJSk7B82HXaD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fan, Mengqiu ; Zon, Zhaoyu ; Tian, Xiaocheng ; Xu, Dangpeng ; Zhou, Dandan ; Zhang, Rui ; Zhu, Na ; Xie, Lianghua ; Li, Hongxun ; Su, Jingqin ; Zhu, Qihua</creator><creatorcontrib>Fan, Mengqiu ; Zon, Zhaoyu ; Tian, Xiaocheng ; Xu, Dangpeng ; Zhou, Dandan ; Zhang, Rui ; Zhu, Na ; Xie, Lianghua ; Li, Hongxun ; Su, Jingqin ; Zhu, Qihua</creatorcontrib><description>We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2017.2669485</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distributed feedback devices ; Fiber lasers ; Laser feedback ; Optical fiber amplifiers ; Optical fiber couplers ; random distributed feedback ; Random fiber laser ; Rayleigh scattering ; ytterbium-doped fiber</subject><ispartof>IEEE photonics journal, 2017-04, Vol.9 (2), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</citedby><cites>FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7856972$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Fan, Mengqiu</creatorcontrib><creatorcontrib>Zon, Zhaoyu</creatorcontrib><creatorcontrib>Tian, Xiaocheng</creatorcontrib><creatorcontrib>Xu, Dangpeng</creatorcontrib><creatorcontrib>Zhou, Dandan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhu, Na</creatorcontrib><creatorcontrib>Xie, Lianghua</creatorcontrib><creatorcontrib>Li, Hongxun</creatorcontrib><creatorcontrib>Su, Jingqin</creatorcontrib><creatorcontrib>Zhu, Qihua</creatorcontrib><title>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.</description><subject>Distributed feedback devices</subject><subject>Fiber lasers</subject><subject>Laser feedback</subject><subject>Optical fiber amplifiers</subject><subject>Optical fiber couplers</subject><subject>random distributed feedback</subject><subject>Random fiber laser</subject><subject>Rayleigh scattering</subject><subject>ytterbium-doped fiber</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kN1OAjEQRjdGExF9Ab3pCyz2d7u9NCiCIYEY7pvudopFdkva1cS38Vl8MlkgXM2XSb6TmZNl9wSPCMHq8W05XaxGFBM5okWheCkusgFRnOW44PLynIW4zm5S2mBcKCLUIFuOQ7OL8AFt8t-AZu03pM6vTedDm1BoEcGC_f22DXo3rQ0Nevapi7766sCiCYCtTP2JJr6CiOYmQbzNrpzZJrg7zWG2mrysxtN8vnidjZ_mec2k7HJGrFPc7Y9zjtDCVg4zyTlIyg0G4ayzpaPcGumswFgUjjMsgXBREEUVG2azI9YGs9G76BsTf3QwXh8WIa61iZ2vt6ArXmIpZOlqWvOKQdm_DkpwQ4irZc-iR1YdQ0oR3JlHsO716oNe3evVJ7370sOx5AHgXJClKJSk7B82HXaD</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Fan, Mengqiu</creator><creator>Zon, Zhaoyu</creator><creator>Tian, Xiaocheng</creator><creator>Xu, Dangpeng</creator><creator>Zhou, Dandan</creator><creator>Zhang, Rui</creator><creator>Zhu, Na</creator><creator>Xie, Lianghua</creator><creator>Li, Hongxun</creator><creator>Su, Jingqin</creator><creator>Zhu, Qihua</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20170401</creationdate><title>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</title><author>Fan, Mengqiu ; Zon, Zhaoyu ; Tian, Xiaocheng ; Xu, Dangpeng ; Zhou, Dandan ; Zhang, Rui ; Zhu, Na ; Xie, Lianghua ; Li, Hongxun ; Su, Jingqin ; Zhu, Qihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Distributed feedback devices</topic><topic>Fiber lasers</topic><topic>Laser feedback</topic><topic>Optical fiber amplifiers</topic><topic>Optical fiber couplers</topic><topic>random distributed feedback</topic><topic>Random fiber laser</topic><topic>Rayleigh scattering</topic><topic>ytterbium-doped fiber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Mengqiu</creatorcontrib><creatorcontrib>Zon, Zhaoyu</creatorcontrib><creatorcontrib>Tian, Xiaocheng</creatorcontrib><creatorcontrib>Xu, Dangpeng</creatorcontrib><creatorcontrib>Zhou, Dandan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhu, Na</creatorcontrib><creatorcontrib>Xie, Lianghua</creatorcontrib><creatorcontrib>Li, Hongxun</creatorcontrib><creatorcontrib>Su, Jingqin</creatorcontrib><creatorcontrib>Zhu, Qihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Mengqiu</au><au>Zon, Zhaoyu</au><au>Tian, Xiaocheng</au><au>Xu, Dangpeng</au><au>Zhou, Dandan</au><au>Zhang, Rui</au><au>Zhu, Na</au><au>Xie, Lianghua</au><au>Li, Hongxun</au><au>Su, Jingqin</au><au>Zhu, Qihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2017.2669485</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2017-04, Vol.9 (2), p.1-9
issn 1943-0655
1943-0647
language eng
recordid cdi_crossref_primary_10_1109_JPHOT_2017_2669485
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Distributed feedback devices
Fiber lasers
Laser feedback
Optical fiber amplifiers
Optical fiber couplers
random distributed feedback
Random fiber laser
Rayleigh scattering
ytterbium-doped fiber
title Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Investigations%20on%201053%C2%A0nm%20Random%20Distributed%20Feedback%20Fiber%20Laser&rft.jtitle=IEEE%20photonics%20journal&rft.au=Fan,%20Mengqiu&rft.date=2017-04-01&rft.volume=9&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2017.2669485&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7856972&rft_doaj_id=oai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79&rfr_iscdi=true