Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser
We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -do...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2017-04, Vol.9 (2), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 9 |
creator | Fan, Mengqiu Zon, Zhaoyu Tian, Xiaocheng Xu, Dangpeng Zhou, Dandan Zhang, Rui Zhu, Na Xie, Lianghua Li, Hongxun Su, Jingqin Zhu, Qihua |
description | We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities. |
doi_str_mv | 10.1109/JPHOT.2017.2669485 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2017_2669485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7856972</ieee_id><doaj_id>oai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79</doaj_id><sourcerecordid>oai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</originalsourceid><addsrcrecordid>eNo9kN1OAjEQRjdGExF9Ab3pCyz2d7u9NCiCIYEY7pvudopFdkva1cS38Vl8MlkgXM2XSb6TmZNl9wSPCMHq8W05XaxGFBM5okWheCkusgFRnOW44PLynIW4zm5S2mBcKCLUIFuOQ7OL8AFt8t-AZu03pM6vTedDm1BoEcGC_f22DXo3rQ0Nevapi7766sCiCYCtTP2JJr6CiOYmQbzNrpzZJrg7zWG2mrysxtN8vnidjZ_mec2k7HJGrFPc7Y9zjtDCVg4zyTlIyg0G4ayzpaPcGumswFgUjjMsgXBREEUVG2azI9YGs9G76BsTf3QwXh8WIa61iZ2vt6ArXmIpZOlqWvOKQdm_DkpwQ4irZc-iR1YdQ0oR3JlHsO716oNe3evVJ7370sOx5AHgXJClKJSk7B82HXaD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fan, Mengqiu ; Zon, Zhaoyu ; Tian, Xiaocheng ; Xu, Dangpeng ; Zhou, Dandan ; Zhang, Rui ; Zhu, Na ; Xie, Lianghua ; Li, Hongxun ; Su, Jingqin ; Zhu, Qihua</creator><creatorcontrib>Fan, Mengqiu ; Zon, Zhaoyu ; Tian, Xiaocheng ; Xu, Dangpeng ; Zhou, Dandan ; Zhang, Rui ; Zhu, Na ; Xie, Lianghua ; Li, Hongxun ; Su, Jingqin ; Zhu, Qihua</creatorcontrib><description>We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2017.2669485</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distributed feedback devices ; Fiber lasers ; Laser feedback ; Optical fiber amplifiers ; Optical fiber couplers ; random distributed feedback ; Random fiber laser ; Rayleigh scattering ; ytterbium-doped fiber</subject><ispartof>IEEE photonics journal, 2017-04, Vol.9 (2), p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</citedby><cites>FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7856972$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Fan, Mengqiu</creatorcontrib><creatorcontrib>Zon, Zhaoyu</creatorcontrib><creatorcontrib>Tian, Xiaocheng</creatorcontrib><creatorcontrib>Xu, Dangpeng</creatorcontrib><creatorcontrib>Zhou, Dandan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhu, Na</creatorcontrib><creatorcontrib>Xie, Lianghua</creatorcontrib><creatorcontrib>Li, Hongxun</creatorcontrib><creatorcontrib>Su, Jingqin</creatorcontrib><creatorcontrib>Zhu, Qihua</creatorcontrib><title>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.</description><subject>Distributed feedback devices</subject><subject>Fiber lasers</subject><subject>Laser feedback</subject><subject>Optical fiber amplifiers</subject><subject>Optical fiber couplers</subject><subject>random distributed feedback</subject><subject>Random fiber laser</subject><subject>Rayleigh scattering</subject><subject>ytterbium-doped fiber</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kN1OAjEQRjdGExF9Ab3pCyz2d7u9NCiCIYEY7pvudopFdkva1cS38Vl8MlkgXM2XSb6TmZNl9wSPCMHq8W05XaxGFBM5okWheCkusgFRnOW44PLynIW4zm5S2mBcKCLUIFuOQ7OL8AFt8t-AZu03pM6vTedDm1BoEcGC_f22DXo3rQ0Nevapi7766sCiCYCtTP2JJr6CiOYmQbzNrpzZJrg7zWG2mrysxtN8vnidjZ_mec2k7HJGrFPc7Y9zjtDCVg4zyTlIyg0G4ayzpaPcGumswFgUjjMsgXBREEUVG2azI9YGs9G76BsTf3QwXh8WIa61iZ2vt6ArXmIpZOlqWvOKQdm_DkpwQ4irZc-iR1YdQ0oR3JlHsO716oNe3evVJ7370sOx5AHgXJClKJSk7B82HXaD</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Fan, Mengqiu</creator><creator>Zon, Zhaoyu</creator><creator>Tian, Xiaocheng</creator><creator>Xu, Dangpeng</creator><creator>Zhou, Dandan</creator><creator>Zhang, Rui</creator><creator>Zhu, Na</creator><creator>Xie, Lianghua</creator><creator>Li, Hongxun</creator><creator>Su, Jingqin</creator><creator>Zhu, Qihua</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20170401</creationdate><title>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</title><author>Fan, Mengqiu ; Zon, Zhaoyu ; Tian, Xiaocheng ; Xu, Dangpeng ; Zhou, Dandan ; Zhang, Rui ; Zhu, Na ; Xie, Lianghua ; Li, Hongxun ; Su, Jingqin ; Zhu, Qihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-31df94f647ff126dbf03744e724a0e5fdfd8f24da7fd50056f4307e145619293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Distributed feedback devices</topic><topic>Fiber lasers</topic><topic>Laser feedback</topic><topic>Optical fiber amplifiers</topic><topic>Optical fiber couplers</topic><topic>random distributed feedback</topic><topic>Random fiber laser</topic><topic>Rayleigh scattering</topic><topic>ytterbium-doped fiber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Mengqiu</creatorcontrib><creatorcontrib>Zon, Zhaoyu</creatorcontrib><creatorcontrib>Tian, Xiaocheng</creatorcontrib><creatorcontrib>Xu, Dangpeng</creatorcontrib><creatorcontrib>Zhou, Dandan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhu, Na</creatorcontrib><creatorcontrib>Xie, Lianghua</creatorcontrib><creatorcontrib>Li, Hongxun</creatorcontrib><creatorcontrib>Su, Jingqin</creatorcontrib><creatorcontrib>Zhu, Qihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Mengqiu</au><au>Zon, Zhaoyu</au><au>Tian, Xiaocheng</au><au>Xu, Dangpeng</au><au>Zhou, Dandan</au><au>Zhang, Rui</au><au>Zhu, Na</au><au>Xie, Lianghua</au><au>Li, Hongxun</au><au>Su, Jingqin</au><au>Zhu, Qihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>We design a 1053 nm Yb 3+ -doped random fiber laser (YRFL) based on the combination of Yb 3+ -doped fiber (YDF) and single mode fiber (SMF), in which the YDF provides active gain, while SMF offers random distributed feedback. The numerical model is established based on the rate equation of Yb 3+ -doped laser, and it is modified and developed to calculate the power performance of YRFL. The numerical results show that the YDF's length and the pumping scheme could influence the laser power performance. Then, the forward and backward pumped YRFL both with 9.5 m YDF and 2 km SMF are experimentally demonstrated whose threshold powers are 1 and 1.1 W, respectively. The obtained optical slope efficiencies are 45.2% and 40.9% for these two cases. The experimental results agree with the calculated results well. This work gives a general study on active gain based random fiber lasers, which can enrich the operation wavelength range of random fiber laser and may broaden its application fields to high energy large-scale laser facilities.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2017.2669485</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2017-04, Vol.9 (2), p.1-9 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2017_2669485 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Distributed feedback devices Fiber lasers Laser feedback Optical fiber amplifiers Optical fiber couplers random distributed feedback Random fiber laser Rayleigh scattering ytterbium-doped fiber |
title | Comprehensive Investigations on 1053 nm Random Distributed Feedback Fiber Laser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Investigations%20on%201053%C2%A0nm%20Random%20Distributed%20Feedback%20Fiber%20Laser&rft.jtitle=IEEE%20photonics%20journal&rft.au=Fan,%20Mengqiu&rft.date=2017-04-01&rft.volume=9&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2017.2669485&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7856972&rft_doaj_id=oai_doaj_org_article_b4807578fc2c4b3e86915e954a11fc79&rfr_iscdi=true |