Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics

A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2015-04, Vol.7 (2), p.1-11
Hauptverfasser: Cooper, P. A., Carpenter, L. G., Holmes, C., Sima, C., Gates, J. C., Smith, P. G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2
container_start_page 1
container_title IEEE photonics journal
container_volume 7
creator Cooper, P. A.
Carpenter, L. G.
Holmes, C.
Sima, C.
Gates, J. C.
Smith, P. G. R.
description A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.
doi_str_mv 10.1109/JPHOT.2015.2415673
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2015_2415673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7076618</ieee_id><doaj_id>oai_doaj_org_article_b1e245c1d81244ad8f2805d0245226b1</doaj_id><sourcerecordid>3759033101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxZfSQNIkXyC9LPTSy7oarf4e2-AmKYEY6h5yElpp1pZZS6m0Jvjbd2MHH3qax_B7jxleVd0AmQEQ_e3X4v5pOaME-Iwy4EK2H6oL0KxtiGDy40lzfl59KmVDiNDA9UX1vEivmJt53wcXMLp9PY9rGx36ernGvLXDsK-Xu2i7Aesf2a5W9V22Y4iruk-5_h2G4GyTYnNQKdaLdRpTDK5cVWe9HQpev8_L6s_P-fL2vnl8unu4_f7YONaqsfGSoKPcQqda7VrPie87r4Rk3Home0IYMKFb6DwozjwwpilDdJ220ivXXlYPx1yf7Ma85LC1eW-SDeawSHllbB6DG9B0gJRxB14BZcx61VNFuCfTklLRwZT19Zj1ktPfHZbRbENxOAw2YtoVA0JxqUAqMaFf_kM3aZfj9OlEaU2EUoRMFD1SLqdSMvanA4GYt-bMoTnz1px5b24yfT6aAiKeDJJIIUC1_wA0t5MG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699068800</pqid></control><display><type>article</type><title>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cooper, P. A. ; Carpenter, L. G. ; Holmes, C. ; Sima, C. ; Gates, J. C. ; Smith, P. G. R.</creator><creatorcontrib>Cooper, P. A. ; Carpenter, L. G. ; Holmes, C. ; Sima, C. ; Gates, J. C. ; Smith, P. G. R.</creatorcontrib><description>A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2015.2415673</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bragg grating ; Bragg gratings ; Devices ; Heating ; microbeam ; Microbeams ; Modulation ; Optical device fabrication ; Optical reflection ; Optical waveguides ; Photonics ; power efficiency ; Semiconductors ; Silicon ; Stress ; thermal tuning ; Tuning ; Ultraviolet ; Wavelengths</subject><ispartof>IEEE photonics journal, 2015-04, Vol.7 (2), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</citedby><cites>FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7076618$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Cooper, P. A.</creatorcontrib><creatorcontrib>Carpenter, L. G.</creatorcontrib><creatorcontrib>Holmes, C.</creatorcontrib><creatorcontrib>Sima, C.</creatorcontrib><creatorcontrib>Gates, J. C.</creatorcontrib><creatorcontrib>Smith, P. G. R.</creatorcontrib><title>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.</description><subject>Bragg grating</subject><subject>Bragg gratings</subject><subject>Devices</subject><subject>Heating</subject><subject>microbeam</subject><subject>Microbeams</subject><subject>Modulation</subject><subject>Optical device fabrication</subject><subject>Optical reflection</subject><subject>Optical waveguides</subject><subject>Photonics</subject><subject>power efficiency</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Stress</subject><subject>thermal tuning</subject><subject>Tuning</subject><subject>Ultraviolet</subject><subject>Wavelengths</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9rGzEQxZfSQNIkXyC9LPTSy7oarf4e2-AmKYEY6h5yElpp1pZZS6m0Jvjbd2MHH3qax_B7jxleVd0AmQEQ_e3X4v5pOaME-Iwy4EK2H6oL0KxtiGDy40lzfl59KmVDiNDA9UX1vEivmJt53wcXMLp9PY9rGx36ernGvLXDsK-Xu2i7Aesf2a5W9V22Y4iruk-5_h2G4GyTYnNQKdaLdRpTDK5cVWe9HQpev8_L6s_P-fL2vnl8unu4_f7YONaqsfGSoKPcQqda7VrPie87r4Rk3Home0IYMKFb6DwozjwwpilDdJ220ivXXlYPx1yf7Ma85LC1eW-SDeawSHllbB6DG9B0gJRxB14BZcx61VNFuCfTklLRwZT19Zj1ktPfHZbRbENxOAw2YtoVA0JxqUAqMaFf_kM3aZfj9OlEaU2EUoRMFD1SLqdSMvanA4GYt-bMoTnz1px5b24yfT6aAiKeDJJIIUC1_wA0t5MG</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Cooper, P. A.</creator><creator>Carpenter, L. G.</creator><creator>Holmes, C.</creator><creator>Sima, C.</creator><creator>Gates, J. C.</creator><creator>Smith, P. G. R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20150401</creationdate><title>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</title><author>Cooper, P. A. ; Carpenter, L. G. ; Holmes, C. ; Sima, C. ; Gates, J. C. ; Smith, P. G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bragg grating</topic><topic>Bragg gratings</topic><topic>Devices</topic><topic>Heating</topic><topic>microbeam</topic><topic>Microbeams</topic><topic>Modulation</topic><topic>Optical device fabrication</topic><topic>Optical reflection</topic><topic>Optical waveguides</topic><topic>Photonics</topic><topic>power efficiency</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Stress</topic><topic>thermal tuning</topic><topic>Tuning</topic><topic>Ultraviolet</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, P. A.</creatorcontrib><creatorcontrib>Carpenter, L. G.</creatorcontrib><creatorcontrib>Holmes, C.</creatorcontrib><creatorcontrib>Sima, C.</creatorcontrib><creatorcontrib>Gates, J. C.</creatorcontrib><creatorcontrib>Smith, P. G. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, P. A.</au><au>Carpenter, L. G.</au><au>Holmes, C.</au><au>Sima, C.</au><au>Gates, J. C.</au><au>Smith, P. G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>7</volume><issue>2</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2015.2415673</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2015-04, Vol.7 (2), p.1-11
issn 1943-0655
1943-0647
language eng
recordid cdi_crossref_primary_10_1109_JPHOT_2015_2415673
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bragg grating
Bragg gratings
Devices
Heating
microbeam
Microbeams
Modulation
Optical device fabrication
Optical reflection
Optical waveguides
Photonics
power efficiency
Semiconductors
Silicon
Stress
thermal tuning
Tuning
Ultraviolet
Wavelengths
title Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-Efficiency%20Enhanced%20Thermally%20Tunable%20Bragg%20Grating%20for%20Silica-on-Silicon%20Photonics&rft.jtitle=IEEE%20photonics%20journal&rft.au=Cooper,%20P.%20A.&rft.date=2015-04-01&rft.volume=7&rft.issue=2&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2015.2415673&rft_dat=%3Cproquest_cross%3E3759033101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699068800&rft_id=info:pmid/&rft_ieee_id=7076618&rft_doaj_id=oai_doaj_org_article_b1e245c1d81244ad8f2805d0245226b1&rfr_iscdi=true