Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics
A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2015-04, Vol.7 (2), p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 7 |
creator | Cooper, P. A. Carpenter, L. G. Holmes, C. Sima, C. Gates, J. C. Smith, P. G. R. |
description | A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included. |
doi_str_mv | 10.1109/JPHOT.2015.2415673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2015_2415673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7076618</ieee_id><doaj_id>oai_doaj_org_article_b1e245c1d81244ad8f2805d0245226b1</doaj_id><sourcerecordid>3759033101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxZfSQNIkXyC9LPTSy7oarf4e2-AmKYEY6h5yElpp1pZZS6m0Jvjbd2MHH3qax_B7jxleVd0AmQEQ_e3X4v5pOaME-Iwy4EK2H6oL0KxtiGDy40lzfl59KmVDiNDA9UX1vEivmJt53wcXMLp9PY9rGx36ernGvLXDsK-Xu2i7Aesf2a5W9V22Y4iruk-5_h2G4GyTYnNQKdaLdRpTDK5cVWe9HQpev8_L6s_P-fL2vnl8unu4_f7YONaqsfGSoKPcQqda7VrPie87r4Rk3Home0IYMKFb6DwozjwwpilDdJ220ivXXlYPx1yf7Ma85LC1eW-SDeawSHllbB6DG9B0gJRxB14BZcx61VNFuCfTklLRwZT19Zj1ktPfHZbRbENxOAw2YtoVA0JxqUAqMaFf_kM3aZfj9OlEaU2EUoRMFD1SLqdSMvanA4GYt-bMoTnz1px5b24yfT6aAiKeDJJIIUC1_wA0t5MG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699068800</pqid></control><display><type>article</type><title>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cooper, P. A. ; Carpenter, L. G. ; Holmes, C. ; Sima, C. ; Gates, J. C. ; Smith, P. G. R.</creator><creatorcontrib>Cooper, P. A. ; Carpenter, L. G. ; Holmes, C. ; Sima, C. ; Gates, J. C. ; Smith, P. G. R.</creatorcontrib><description>A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2015.2415673</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bragg grating ; Bragg gratings ; Devices ; Heating ; microbeam ; Microbeams ; Modulation ; Optical device fabrication ; Optical reflection ; Optical waveguides ; Photonics ; power efficiency ; Semiconductors ; Silicon ; Stress ; thermal tuning ; Tuning ; Ultraviolet ; Wavelengths</subject><ispartof>IEEE photonics journal, 2015-04, Vol.7 (2), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</citedby><cites>FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7076618$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Cooper, P. A.</creatorcontrib><creatorcontrib>Carpenter, L. G.</creatorcontrib><creatorcontrib>Holmes, C.</creatorcontrib><creatorcontrib>Sima, C.</creatorcontrib><creatorcontrib>Gates, J. C.</creatorcontrib><creatorcontrib>Smith, P. G. R.</creatorcontrib><title>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.</description><subject>Bragg grating</subject><subject>Bragg gratings</subject><subject>Devices</subject><subject>Heating</subject><subject>microbeam</subject><subject>Microbeams</subject><subject>Modulation</subject><subject>Optical device fabrication</subject><subject>Optical reflection</subject><subject>Optical waveguides</subject><subject>Photonics</subject><subject>power efficiency</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Stress</subject><subject>thermal tuning</subject><subject>Tuning</subject><subject>Ultraviolet</subject><subject>Wavelengths</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9rGzEQxZfSQNIkXyC9LPTSy7oarf4e2-AmKYEY6h5yElpp1pZZS6m0Jvjbd2MHH3qax_B7jxleVd0AmQEQ_e3X4v5pOaME-Iwy4EK2H6oL0KxtiGDy40lzfl59KmVDiNDA9UX1vEivmJt53wcXMLp9PY9rGx36ernGvLXDsK-Xu2i7Aesf2a5W9V22Y4iruk-5_h2G4GyTYnNQKdaLdRpTDK5cVWe9HQpev8_L6s_P-fL2vnl8unu4_f7YONaqsfGSoKPcQqda7VrPie87r4Rk3Home0IYMKFb6DwozjwwpilDdJ220ivXXlYPx1yf7Ma85LC1eW-SDeawSHllbB6DG9B0gJRxB14BZcx61VNFuCfTklLRwZT19Zj1ktPfHZbRbENxOAw2YtoVA0JxqUAqMaFf_kM3aZfj9OlEaU2EUoRMFD1SLqdSMvanA4GYt-bMoTnz1px5b24yfT6aAiKeDJJIIUC1_wA0t5MG</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Cooper, P. A.</creator><creator>Carpenter, L. G.</creator><creator>Holmes, C.</creator><creator>Sima, C.</creator><creator>Gates, J. C.</creator><creator>Smith, P. G. R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20150401</creationdate><title>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</title><author>Cooper, P. A. ; Carpenter, L. G. ; Holmes, C. ; Sima, C. ; Gates, J. C. ; Smith, P. G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d70ec25a1b839c3d50dfbd86745ad47f004146931bd1854d144924eecb9a7d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bragg grating</topic><topic>Bragg gratings</topic><topic>Devices</topic><topic>Heating</topic><topic>microbeam</topic><topic>Microbeams</topic><topic>Modulation</topic><topic>Optical device fabrication</topic><topic>Optical reflection</topic><topic>Optical waveguides</topic><topic>Photonics</topic><topic>power efficiency</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Stress</topic><topic>thermal tuning</topic><topic>Tuning</topic><topic>Ultraviolet</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, P. A.</creatorcontrib><creatorcontrib>Carpenter, L. G.</creatorcontrib><creatorcontrib>Holmes, C.</creatorcontrib><creatorcontrib>Sima, C.</creatorcontrib><creatorcontrib>Gates, J. C.</creatorcontrib><creatorcontrib>Smith, P. G. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, P. A.</au><au>Carpenter, L. G.</au><au>Holmes, C.</au><au>Sima, C.</au><au>Gates, J. C.</au><au>Smith, P. G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>7</volume><issue>2</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>A thermally tunable Bragg grating device has been fabricated in a silica-on-silicon integrated optical chip, incorporating a suspended microbeam improving power efficiency. A waveguide and Bragg grating are defined through the middle of the microbeam via direct ultraviolet writing. A tuning range of 0.4 nm (50 GHz) is demonstrated at the telecommunication wavelength of 1550 nm. Power consumption during wavelength tuning is measured at 45 pm/mW, which is a factor of 90 better than reported values for similar bulk thermally tuned silica-on-silicon planar devices. The response time to a step change in heating is longer by a similar factor, as expected for a highly power-efficient device. The fabrication procedure involves a deep micromilling process, as well as wet etching and metal deposition. With this response, the device would be suitable for trimming applications and wherever low modulation frequencies are acceptable. A four-point-probe-based temperature measurement was also done to ascertain the temperature reached during tuning and found an average volume temperature of 48 °C, corresponding to 0.4 nm of tuning. The role of stress-induced buckling in device fabrication is included.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2015.2415673</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2015-04, Vol.7 (2), p.1-11 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2015_2415673 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bragg grating Bragg gratings Devices Heating microbeam Microbeams Modulation Optical device fabrication Optical reflection Optical waveguides Photonics power efficiency Semiconductors Silicon Stress thermal tuning Tuning Ultraviolet Wavelengths |
title | Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-Efficiency%20Enhanced%20Thermally%20Tunable%20Bragg%20Grating%20for%20Silica-on-Silicon%20Photonics&rft.jtitle=IEEE%20photonics%20journal&rft.au=Cooper,%20P.%20A.&rft.date=2015-04-01&rft.volume=7&rft.issue=2&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2015.2415673&rft_dat=%3Cproquest_cross%3E3759033101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699068800&rft_id=info:pmid/&rft_ieee_id=7076618&rft_doaj_id=oai_doaj_org_article_b1e245c1d81244ad8f2805d0245226b1&rfr_iscdi=true |