Quantum Dots for Single- and Entangled-Photon Emitters

The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using approp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2009-06, Vol.1 (1), p.58-68
Hauptverfasser: Bimberg, D., Stock, E., Lochmann, A., Schliwa, A., Tofflinger, J.A., Unrau, W., Munnix, M., Rodt, S., Haisler, V.A., Toropov, A.I., Bakarov, A., Kalagin, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 58
container_title IEEE photonics journal
container_volume 1
creator Bimberg, D.
Stock, E.
Lochmann, A.
Schliwa, A.
Tofflinger, J.A.
Unrau, W.
Munnix, M.
Rodt, S.
Haisler, V.A.
Toropov, A.I.
Bakarov, A.
Kalagin, A.K.
description The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.
doi_str_mv 10.1109/JPHOT.2009.2025329
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2009_2025329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075634</ieee_id><doaj_id>oai_doaj_org_article_23edd45824714600b59bcd10eef10dae</doaj_id><sourcerecordid>1365155532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</originalsourceid><addsrcrecordid>eNqNUctOwzAQjBBIPH8ALjlySfFrk_iISqGgSi0CzpZjb0pQEhfbPfD3JLTqmcu-NDO72kmSa0omlBJ597KaL98njBA5BAacyaPkjErBM5KL4vhQA5wm5yF8EZJLCvIsyV-3uo_bLn1wMaS18-lb069bzFLd23TWRz12Nlt9uuj6dNY1MaIPl8lJrduAV_t8kXw8zt6n82yxfHqe3i8yA1DGrKhFVQtRCMMJCjRlWRFqWU6I4aKklQYwtcgLVsihtkAYQs1MqQeCZKD5RfK807VOf6mNbzrtf5TTjfobOL9W2sfGtKgYR2sFlEwUVAwbKpCVsZQg1pRYjYPW7U5r4933FkNUXRMMtq3u0W2DojwHCjA87x9QMfyTi3yEsh3UeBeCx_pwJSVq9Eb9eaNGb9Tem4F0syM1iHggACkg54L_AkEEiFs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349433462</pqid></control><display><type>article</type><title>Quantum Dots for Single- and Entangled-Photon Emitters</title><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Bimberg, D. ; Stock, E. ; Lochmann, A. ; Schliwa, A. ; Tofflinger, J.A. ; Unrau, W. ; Munnix, M. ; Rodt, S. ; Haisler, V.A. ; Toropov, A.I. ; Bakarov, A. ; Kalagin, A.K.</creator><creatorcontrib>Bimberg, D. ; Stock, E. ; Lochmann, A. ; Schliwa, A. ; Tofflinger, J.A. ; Unrau, W. ; Munnix, M. ; Rodt, S. ; Haisler, V.A. ; Toropov, A.I. ; Bakarov, A. ; Kalagin, A.K.</creatorcontrib><description>The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2009.2025329</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apertures ; Charge carrier processes ; Design optimization ; Emission ; Emittance ; entangled photon pairs ; Filtering ; Optical polarization ; Photons ; Quantum dots ; Quantum dots (QDs) ; Quantum entanglement ; Radiative recombination ; Resonance ; Semiconductors ; single-photon emission ; Spark plasma sintering ; Splitting ; Substrates</subject><ispartof>IEEE photonics journal, 2009-06, Vol.1 (1), p.58-68</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</citedby><cites>FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075634$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bimberg, D.</creatorcontrib><creatorcontrib>Stock, E.</creatorcontrib><creatorcontrib>Lochmann, A.</creatorcontrib><creatorcontrib>Schliwa, A.</creatorcontrib><creatorcontrib>Tofflinger, J.A.</creatorcontrib><creatorcontrib>Unrau, W.</creatorcontrib><creatorcontrib>Munnix, M.</creatorcontrib><creatorcontrib>Rodt, S.</creatorcontrib><creatorcontrib>Haisler, V.A.</creatorcontrib><creatorcontrib>Toropov, A.I.</creatorcontrib><creatorcontrib>Bakarov, A.</creatorcontrib><creatorcontrib>Kalagin, A.K.</creatorcontrib><title>Quantum Dots for Single- and Entangled-Photon Emitters</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.</description><subject>Apertures</subject><subject>Charge carrier processes</subject><subject>Design optimization</subject><subject>Emission</subject><subject>Emittance</subject><subject>entangled photon pairs</subject><subject>Filtering</subject><subject>Optical polarization</subject><subject>Photons</subject><subject>Quantum dots</subject><subject>Quantum dots (QDs)</subject><subject>Quantum entanglement</subject><subject>Radiative recombination</subject><subject>Resonance</subject><subject>Semiconductors</subject><subject>single-photon emission</subject><subject>Spark plasma sintering</subject><subject>Splitting</subject><subject>Substrates</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNqNUctOwzAQjBBIPH8ALjlySfFrk_iISqGgSi0CzpZjb0pQEhfbPfD3JLTqmcu-NDO72kmSa0omlBJ597KaL98njBA5BAacyaPkjErBM5KL4vhQA5wm5yF8EZJLCvIsyV-3uo_bLn1wMaS18-lb069bzFLd23TWRz12Nlt9uuj6dNY1MaIPl8lJrduAV_t8kXw8zt6n82yxfHqe3i8yA1DGrKhFVQtRCMMJCjRlWRFqWU6I4aKklQYwtcgLVsihtkAYQs1MqQeCZKD5RfK807VOf6mNbzrtf5TTjfobOL9W2sfGtKgYR2sFlEwUVAwbKpCVsZQg1pRYjYPW7U5r4933FkNUXRMMtq3u0W2DojwHCjA87x9QMfyTi3yEsh3UeBeCx_pwJSVq9Eb9eaNGb9Tem4F0syM1iHggACkg54L_AkEEiFs</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Bimberg, D.</creator><creator>Stock, E.</creator><creator>Lochmann, A.</creator><creator>Schliwa, A.</creator><creator>Tofflinger, J.A.</creator><creator>Unrau, W.</creator><creator>Munnix, M.</creator><creator>Rodt, S.</creator><creator>Haisler, V.A.</creator><creator>Toropov, A.I.</creator><creator>Bakarov, A.</creator><creator>Kalagin, A.K.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>200906</creationdate><title>Quantum Dots for Single- and Entangled-Photon Emitters</title><author>Bimberg, D. ; Stock, E. ; Lochmann, A. ; Schliwa, A. ; Tofflinger, J.A. ; Unrau, W. ; Munnix, M. ; Rodt, S. ; Haisler, V.A. ; Toropov, A.I. ; Bakarov, A. ; Kalagin, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apertures</topic><topic>Charge carrier processes</topic><topic>Design optimization</topic><topic>Emission</topic><topic>Emittance</topic><topic>entangled photon pairs</topic><topic>Filtering</topic><topic>Optical polarization</topic><topic>Photons</topic><topic>Quantum dots</topic><topic>Quantum dots (QDs)</topic><topic>Quantum entanglement</topic><topic>Radiative recombination</topic><topic>Resonance</topic><topic>Semiconductors</topic><topic>single-photon emission</topic><topic>Spark plasma sintering</topic><topic>Splitting</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bimberg, D.</creatorcontrib><creatorcontrib>Stock, E.</creatorcontrib><creatorcontrib>Lochmann, A.</creatorcontrib><creatorcontrib>Schliwa, A.</creatorcontrib><creatorcontrib>Tofflinger, J.A.</creatorcontrib><creatorcontrib>Unrau, W.</creatorcontrib><creatorcontrib>Munnix, M.</creatorcontrib><creatorcontrib>Rodt, S.</creatorcontrib><creatorcontrib>Haisler, V.A.</creatorcontrib><creatorcontrib>Toropov, A.I.</creatorcontrib><creatorcontrib>Bakarov, A.</creatorcontrib><creatorcontrib>Kalagin, A.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bimberg, D.</au><au>Stock, E.</au><au>Lochmann, A.</au><au>Schliwa, A.</au><au>Tofflinger, J.A.</au><au>Unrau, W.</au><au>Munnix, M.</au><au>Rodt, S.</au><au>Haisler, V.A.</au><au>Toropov, A.I.</au><au>Bakarov, A.</au><au>Kalagin, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Dots for Single- and Entangled-Photon Emitters</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2009-06</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>58</spage><epage>68</epage><pages>58-68</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2009.2025329</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2009-06, Vol.1 (1), p.58-68
issn 1943-0655
1943-0647
language eng
recordid cdi_crossref_primary_10_1109_JPHOT_2009_2025329
source IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Apertures
Charge carrier processes
Design optimization
Emission
Emittance
entangled photon pairs
Filtering
Optical polarization
Photons
Quantum dots
Quantum dots (QDs)
Quantum entanglement
Radiative recombination
Resonance
Semiconductors
single-photon emission
Spark plasma sintering
Splitting
Substrates
title Quantum Dots for Single- and Entangled-Photon Emitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Dots%20for%20Single-%20and%20Entangled-Photon%20Emitters&rft.jtitle=IEEE%20photonics%20journal&rft.au=Bimberg,%20D.&rft.date=2009-06&rft.volume=1&rft.issue=1&rft.spage=58&rft.epage=68&rft.pages=58-68&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2009.2025329&rft_dat=%3Cproquest_cross%3E1365155532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349433462&rft_id=info:pmid/&rft_ieee_id=5075634&rft_doaj_id=oai_doaj_org_article_23edd45824714600b59bcd10eef10dae&rfr_iscdi=true