Quantum Dots for Single- and Entangled-Photon Emitters
The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using approp...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2009-06, Vol.1 (1), p.58-68 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | IEEE photonics journal |
container_volume | 1 |
creator | Bimberg, D. Stock, E. Lochmann, A. Schliwa, A. Tofflinger, J.A. Unrau, W. Munnix, M. Rodt, S. Haisler, V.A. Toropov, A.I. Bakarov, A. Kalagin, A.K. |
description | The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape. |
doi_str_mv | 10.1109/JPHOT.2009.2025329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOT_2009_2025329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075634</ieee_id><doaj_id>oai_doaj_org_article_23edd45824714600b59bcd10eef10dae</doaj_id><sourcerecordid>1365155532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</originalsourceid><addsrcrecordid>eNqNUctOwzAQjBBIPH8ALjlySfFrk_iISqGgSi0CzpZjb0pQEhfbPfD3JLTqmcu-NDO72kmSa0omlBJ597KaL98njBA5BAacyaPkjErBM5KL4vhQA5wm5yF8EZJLCvIsyV-3uo_bLn1wMaS18-lb069bzFLd23TWRz12Nlt9uuj6dNY1MaIPl8lJrduAV_t8kXw8zt6n82yxfHqe3i8yA1DGrKhFVQtRCMMJCjRlWRFqWU6I4aKklQYwtcgLVsihtkAYQs1MqQeCZKD5RfK807VOf6mNbzrtf5TTjfobOL9W2sfGtKgYR2sFlEwUVAwbKpCVsZQg1pRYjYPW7U5r4933FkNUXRMMtq3u0W2DojwHCjA87x9QMfyTi3yEsh3UeBeCx_pwJSVq9Eb9eaNGb9Tem4F0syM1iHggACkg54L_AkEEiFs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349433462</pqid></control><display><type>article</type><title>Quantum Dots for Single- and Entangled-Photon Emitters</title><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Bimberg, D. ; Stock, E. ; Lochmann, A. ; Schliwa, A. ; Tofflinger, J.A. ; Unrau, W. ; Munnix, M. ; Rodt, S. ; Haisler, V.A. ; Toropov, A.I. ; Bakarov, A. ; Kalagin, A.K.</creator><creatorcontrib>Bimberg, D. ; Stock, E. ; Lochmann, A. ; Schliwa, A. ; Tofflinger, J.A. ; Unrau, W. ; Munnix, M. ; Rodt, S. ; Haisler, V.A. ; Toropov, A.I. ; Bakarov, A. ; Kalagin, A.K.</creatorcontrib><description>The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2009.2025329</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apertures ; Charge carrier processes ; Design optimization ; Emission ; Emittance ; entangled photon pairs ; Filtering ; Optical polarization ; Photons ; Quantum dots ; Quantum dots (QDs) ; Quantum entanglement ; Radiative recombination ; Resonance ; Semiconductors ; single-photon emission ; Spark plasma sintering ; Splitting ; Substrates</subject><ispartof>IEEE photonics journal, 2009-06, Vol.1 (1), p.58-68</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</citedby><cites>FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075634$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bimberg, D.</creatorcontrib><creatorcontrib>Stock, E.</creatorcontrib><creatorcontrib>Lochmann, A.</creatorcontrib><creatorcontrib>Schliwa, A.</creatorcontrib><creatorcontrib>Tofflinger, J.A.</creatorcontrib><creatorcontrib>Unrau, W.</creatorcontrib><creatorcontrib>Munnix, M.</creatorcontrib><creatorcontrib>Rodt, S.</creatorcontrib><creatorcontrib>Haisler, V.A.</creatorcontrib><creatorcontrib>Toropov, A.I.</creatorcontrib><creatorcontrib>Bakarov, A.</creatorcontrib><creatorcontrib>Kalagin, A.K.</creatorcontrib><title>Quantum Dots for Single- and Entangled-Photon Emitters</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.</description><subject>Apertures</subject><subject>Charge carrier processes</subject><subject>Design optimization</subject><subject>Emission</subject><subject>Emittance</subject><subject>entangled photon pairs</subject><subject>Filtering</subject><subject>Optical polarization</subject><subject>Photons</subject><subject>Quantum dots</subject><subject>Quantum dots (QDs)</subject><subject>Quantum entanglement</subject><subject>Radiative recombination</subject><subject>Resonance</subject><subject>Semiconductors</subject><subject>single-photon emission</subject><subject>Spark plasma sintering</subject><subject>Splitting</subject><subject>Substrates</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNqNUctOwzAQjBBIPH8ALjlySfFrk_iISqGgSi0CzpZjb0pQEhfbPfD3JLTqmcu-NDO72kmSa0omlBJ597KaL98njBA5BAacyaPkjErBM5KL4vhQA5wm5yF8EZJLCvIsyV-3uo_bLn1wMaS18-lb069bzFLd23TWRz12Nlt9uuj6dNY1MaIPl8lJrduAV_t8kXw8zt6n82yxfHqe3i8yA1DGrKhFVQtRCMMJCjRlWRFqWU6I4aKklQYwtcgLVsihtkAYQs1MqQeCZKD5RfK807VOf6mNbzrtf5TTjfobOL9W2sfGtKgYR2sFlEwUVAwbKpCVsZQg1pRYjYPW7U5r4933FkNUXRMMtq3u0W2DojwHCjA87x9QMfyTi3yEsh3UeBeCx_pwJSVq9Eb9eaNGb9Tem4F0syM1iHggACkg54L_AkEEiFs</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Bimberg, D.</creator><creator>Stock, E.</creator><creator>Lochmann, A.</creator><creator>Schliwa, A.</creator><creator>Tofflinger, J.A.</creator><creator>Unrau, W.</creator><creator>Munnix, M.</creator><creator>Rodt, S.</creator><creator>Haisler, V.A.</creator><creator>Toropov, A.I.</creator><creator>Bakarov, A.</creator><creator>Kalagin, A.K.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>200906</creationdate><title>Quantum Dots for Single- and Entangled-Photon Emitters</title><author>Bimberg, D. ; Stock, E. ; Lochmann, A. ; Schliwa, A. ; Tofflinger, J.A. ; Unrau, W. ; Munnix, M. ; Rodt, S. ; Haisler, V.A. ; Toropov, A.I. ; Bakarov, A. ; Kalagin, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-7f4bf4474c30e4ec88b01d2600c3481ba55cf467279ba5d502e5f2c8a4c3925a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apertures</topic><topic>Charge carrier processes</topic><topic>Design optimization</topic><topic>Emission</topic><topic>Emittance</topic><topic>entangled photon pairs</topic><topic>Filtering</topic><topic>Optical polarization</topic><topic>Photons</topic><topic>Quantum dots</topic><topic>Quantum dots (QDs)</topic><topic>Quantum entanglement</topic><topic>Radiative recombination</topic><topic>Resonance</topic><topic>Semiconductors</topic><topic>single-photon emission</topic><topic>Spark plasma sintering</topic><topic>Splitting</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bimberg, D.</creatorcontrib><creatorcontrib>Stock, E.</creatorcontrib><creatorcontrib>Lochmann, A.</creatorcontrib><creatorcontrib>Schliwa, A.</creatorcontrib><creatorcontrib>Tofflinger, J.A.</creatorcontrib><creatorcontrib>Unrau, W.</creatorcontrib><creatorcontrib>Munnix, M.</creatorcontrib><creatorcontrib>Rodt, S.</creatorcontrib><creatorcontrib>Haisler, V.A.</creatorcontrib><creatorcontrib>Toropov, A.I.</creatorcontrib><creatorcontrib>Bakarov, A.</creatorcontrib><creatorcontrib>Kalagin, A.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bimberg, D.</au><au>Stock, E.</au><au>Lochmann, A.</au><au>Schliwa, A.</au><au>Tofflinger, J.A.</au><au>Unrau, W.</au><au>Munnix, M.</au><au>Rodt, S.</au><au>Haisler, V.A.</au><au>Toropov, A.I.</au><au>Bakarov, A.</au><au>Kalagin, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Dots for Single- and Entangled-Photon Emitters</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2009-06</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>58</spage><epage>68</epage><pages>58-68</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlO x current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g (2) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX rarr X rarr 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.</abstract><pub>IEEE</pub><doi>10.1109/JPHOT.2009.2025329</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2009-06, Vol.1 (1), p.58-68 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOT_2009_2025329 |
source | IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Apertures Charge carrier processes Design optimization Emission Emittance entangled photon pairs Filtering Optical polarization Photons Quantum dots Quantum dots (QDs) Quantum entanglement Radiative recombination Resonance Semiconductors single-photon emission Spark plasma sintering Splitting Substrates |
title | Quantum Dots for Single- and Entangled-Photon Emitters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Dots%20for%20Single-%20and%20Entangled-Photon%20Emitters&rft.jtitle=IEEE%20photonics%20journal&rft.au=Bimberg,%20D.&rft.date=2009-06&rft.volume=1&rft.issue=1&rft.spage=58&rft.epage=68&rft.pages=58-68&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2009.2025329&rft_dat=%3Cproquest_cross%3E1365155532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349433462&rft_id=info:pmid/&rft_ieee_id=5075634&rft_doaj_id=oai_doaj_org_article_23edd45824714600b59bcd10eef10dae&rfr_iscdi=true |