Research on Image Registration Algorithm and Its Application in Photovoltaic Images
Due to high similarity interference of photovoltaic images, repetitive EL image detection and photovoltaic image stitching pose a great challenge. This article proposes two application algorithms and a registration method, which are repetitive EL image detection and photovoltaic image stitching base...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2020-03, Vol.10 (2), p.595-606 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 2 |
container_start_page | 595 |
container_title | IEEE journal of photovoltaics |
container_volume | 10 |
creator | Zhao, Enyu Li, Lan Song, Meiping Cao, Yuejing Chen, Shuhan Shang, Xiaodi Li, Fang Dai, Sui Bao, Haimo |
description | Due to high similarity interference of photovoltaic images, repetitive EL image detection and photovoltaic image stitching pose a great challenge. This article proposes two application algorithms and a registration method, which are repetitive EL image detection and photovoltaic image stitching based on the proposed AKAZE-LATCH+GMS registration method. Considering the existence of duplicate EL images acquired indoors, a repetitive EL image detection based on global feature consistency and local cell's texture similarity is proposed. The AKAZE-LATCH+GMS is used to calculate global consistent feature ratio and dHash is used to quantify local cell's similarity to determine whether it is repetitive or not. To solve the problem of high similarity of outdoor photovoltaic images, which leads to dislocation of stitching, an image stitching algorithm based on geographic information is proposed in this article. Compared with AKAZE+GMS and ORB+GMS, the registration experimental results show that the AKAZE-LATCH+GMS method can obtain more initial matching features and higher correct matching rate. Indoor EL images with geometric and illumination differences are used to verify the proposed detection method, which can effectively eliminate repetitive EL images. Aerial photovoltaic images, acquired from the same or different view, are used to verify the validity of the stitching method, and the photovoltaic images can be stitched correctly compared with the stitching method without geographic information. |
doi_str_mv | 10.1109/JPHOTOV.2019.2958149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2019_2958149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8944296</ieee_id><sourcerecordid>2359904419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-95a1b84e44dd4699b93c14f72f4d765a3f8cbe52a18546faf8e91797ecd79f3c3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gR4WPG_d_NvdOZaitlJoqdVrSLNJm7LdrEkq-O3dstW5zDDz3hv4IfSAszHGGTy9rWbLzfJzTDIMYwK8xAyu0IBgnqeUZfT6b6YlvkWjEA5ZV3nG85wN0PtaBy292ieuSeZHudPJWu9siF5G260m9c55G_fHRDZVMo8hmbRtbVV_tU2y2rvovl0dpVV9QLhDN0bWQY8ufYg-Xp4301m6WL7Op5NFqghATIFLvC2ZZqyqWA6wBaowMwUxrCpyLqkp1VZzInHJWW6kKTXgAgqtqgIMVXSIHvvc1ruvkw5RHNzJN91LQSgHyBjD0KlYr1LeheC1Ea23R-l_BM7EmaC4EBRnguJCsLPd9zartf63lMAYgZz-AkO5bXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359904419</pqid></control><display><type>article</type><title>Research on Image Registration Algorithm and Its Application in Photovoltaic Images</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Enyu ; Li, Lan ; Song, Meiping ; Cao, Yuejing ; Chen, Shuhan ; Shang, Xiaodi ; Li, Fang ; Dai, Sui ; Bao, Haimo</creator><creatorcontrib>Zhao, Enyu ; Li, Lan ; Song, Meiping ; Cao, Yuejing ; Chen, Shuhan ; Shang, Xiaodi ; Li, Fang ; Dai, Sui ; Bao, Haimo</creatorcontrib><description>Due to high similarity interference of photovoltaic images, repetitive EL image detection and photovoltaic image stitching pose a great challenge. This article proposes two application algorithms and a registration method, which are repetitive EL image detection and photovoltaic image stitching based on the proposed AKAZE-LATCH+GMS registration method. Considering the existence of duplicate EL images acquired indoors, a repetitive EL image detection based on global feature consistency and local cell's texture similarity is proposed. The AKAZE-LATCH+GMS is used to calculate global consistent feature ratio and dHash is used to quantify local cell's similarity to determine whether it is repetitive or not. To solve the problem of high similarity of outdoor photovoltaic images, which leads to dislocation of stitching, an image stitching algorithm based on geographic information is proposed in this article. Compared with AKAZE+GMS and ORB+GMS, the registration experimental results show that the AKAZE-LATCH+GMS method can obtain more initial matching features and higher correct matching rate. Indoor EL images with geometric and illumination differences are used to verify the proposed detection method, which can effectively eliminate repetitive EL images. Aerial photovoltaic images, acquired from the same or different view, are used to verify the validity of the stitching method, and the photovoltaic images can be stitched correctly compared with the stitching method without geographic information.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2958149</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Feature extraction ; Feature point matching ; Image acquisition ; Image detection ; Image registration ; improved AKAZE ; Latches ; Matching ; photovoltaic ; Photovoltaic systems ; Registration ; Similarity ; solar cells ; Stitching</subject><ispartof>IEEE journal of photovoltaics, 2020-03, Vol.10 (2), p.595-606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-95a1b84e44dd4699b93c14f72f4d765a3f8cbe52a18546faf8e91797ecd79f3c3</citedby><cites>FETCH-LOGICAL-c299t-95a1b84e44dd4699b93c14f72f4d765a3f8cbe52a18546faf8e91797ecd79f3c3</cites><orcidid>0000-0002-3175-4169 ; 0000-0001-8551-7399 ; 0000-0002-0133-8447 ; 0000-0001-9996-0666 ; 0000-0001-7165-1861 ; 0000-0002-5061-2510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8944296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8944296$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Enyu</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Song, Meiping</creatorcontrib><creatorcontrib>Cao, Yuejing</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Shang, Xiaodi</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Dai, Sui</creatorcontrib><creatorcontrib>Bao, Haimo</creatorcontrib><title>Research on Image Registration Algorithm and Its Application in Photovoltaic Images</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Due to high similarity interference of photovoltaic images, repetitive EL image detection and photovoltaic image stitching pose a great challenge. This article proposes two application algorithms and a registration method, which are repetitive EL image detection and photovoltaic image stitching based on the proposed AKAZE-LATCH+GMS registration method. Considering the existence of duplicate EL images acquired indoors, a repetitive EL image detection based on global feature consistency and local cell's texture similarity is proposed. The AKAZE-LATCH+GMS is used to calculate global consistent feature ratio and dHash is used to quantify local cell's similarity to determine whether it is repetitive or not. To solve the problem of high similarity of outdoor photovoltaic images, which leads to dislocation of stitching, an image stitching algorithm based on geographic information is proposed in this article. Compared with AKAZE+GMS and ORB+GMS, the registration experimental results show that the AKAZE-LATCH+GMS method can obtain more initial matching features and higher correct matching rate. Indoor EL images with geometric and illumination differences are used to verify the proposed detection method, which can effectively eliminate repetitive EL images. Aerial photovoltaic images, acquired from the same or different view, are used to verify the validity of the stitching method, and the photovoltaic images can be stitched correctly compared with the stitching method without geographic information.</description><subject>Algorithms</subject><subject>Feature extraction</subject><subject>Feature point matching</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>Image registration</subject><subject>improved AKAZE</subject><subject>Latches</subject><subject>Matching</subject><subject>photovoltaic</subject><subject>Photovoltaic systems</subject><subject>Registration</subject><subject>Similarity</subject><subject>solar cells</subject><subject>Stitching</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWGo_gR4WPG_d_NvdOZaitlJoqdVrSLNJm7LdrEkq-O3dstW5zDDz3hv4IfSAszHGGTy9rWbLzfJzTDIMYwK8xAyu0IBgnqeUZfT6b6YlvkWjEA5ZV3nG85wN0PtaBy292ieuSeZHudPJWu9siF5G260m9c55G_fHRDZVMo8hmbRtbVV_tU2y2rvovl0dpVV9QLhDN0bWQY8ufYg-Xp4301m6WL7Op5NFqghATIFLvC2ZZqyqWA6wBaowMwUxrCpyLqkp1VZzInHJWW6kKTXgAgqtqgIMVXSIHvvc1ruvkw5RHNzJN91LQSgHyBjD0KlYr1LeheC1Ea23R-l_BM7EmaC4EBRnguJCsLPd9zartf63lMAYgZz-AkO5bXU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhao, Enyu</creator><creator>Li, Lan</creator><creator>Song, Meiping</creator><creator>Cao, Yuejing</creator><creator>Chen, Shuhan</creator><creator>Shang, Xiaodi</creator><creator>Li, Fang</creator><creator>Dai, Sui</creator><creator>Bao, Haimo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3175-4169</orcidid><orcidid>https://orcid.org/0000-0001-8551-7399</orcidid><orcidid>https://orcid.org/0000-0002-0133-8447</orcidid><orcidid>https://orcid.org/0000-0001-9996-0666</orcidid><orcidid>https://orcid.org/0000-0001-7165-1861</orcidid><orcidid>https://orcid.org/0000-0002-5061-2510</orcidid></search><sort><creationdate>20200301</creationdate><title>Research on Image Registration Algorithm and Its Application in Photovoltaic Images</title><author>Zhao, Enyu ; Li, Lan ; Song, Meiping ; Cao, Yuejing ; Chen, Shuhan ; Shang, Xiaodi ; Li, Fang ; Dai, Sui ; Bao, Haimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-95a1b84e44dd4699b93c14f72f4d765a3f8cbe52a18546faf8e91797ecd79f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Feature extraction</topic><topic>Feature point matching</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>Image registration</topic><topic>improved AKAZE</topic><topic>Latches</topic><topic>Matching</topic><topic>photovoltaic</topic><topic>Photovoltaic systems</topic><topic>Registration</topic><topic>Similarity</topic><topic>solar cells</topic><topic>Stitching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Enyu</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Song, Meiping</creatorcontrib><creatorcontrib>Cao, Yuejing</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>Shang, Xiaodi</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Dai, Sui</creatorcontrib><creatorcontrib>Bao, Haimo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Enyu</au><au>Li, Lan</au><au>Song, Meiping</au><au>Cao, Yuejing</au><au>Chen, Shuhan</au><au>Shang, Xiaodi</au><au>Li, Fang</au><au>Dai, Sui</au><au>Bao, Haimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Image Registration Algorithm and Its Application in Photovoltaic Images</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>595</spage><epage>606</epage><pages>595-606</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Due to high similarity interference of photovoltaic images, repetitive EL image detection and photovoltaic image stitching pose a great challenge. This article proposes two application algorithms and a registration method, which are repetitive EL image detection and photovoltaic image stitching based on the proposed AKAZE-LATCH+GMS registration method. Considering the existence of duplicate EL images acquired indoors, a repetitive EL image detection based on global feature consistency and local cell's texture similarity is proposed. The AKAZE-LATCH+GMS is used to calculate global consistent feature ratio and dHash is used to quantify local cell's similarity to determine whether it is repetitive or not. To solve the problem of high similarity of outdoor photovoltaic images, which leads to dislocation of stitching, an image stitching algorithm based on geographic information is proposed in this article. Compared with AKAZE+GMS and ORB+GMS, the registration experimental results show that the AKAZE-LATCH+GMS method can obtain more initial matching features and higher correct matching rate. Indoor EL images with geometric and illumination differences are used to verify the proposed detection method, which can effectively eliminate repetitive EL images. Aerial photovoltaic images, acquired from the same or different view, are used to verify the validity of the stitching method, and the photovoltaic images can be stitched correctly compared with the stitching method without geographic information.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2958149</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3175-4169</orcidid><orcidid>https://orcid.org/0000-0001-8551-7399</orcidid><orcidid>https://orcid.org/0000-0002-0133-8447</orcidid><orcidid>https://orcid.org/0000-0001-9996-0666</orcidid><orcidid>https://orcid.org/0000-0001-7165-1861</orcidid><orcidid>https://orcid.org/0000-0002-5061-2510</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2020-03, Vol.10 (2), p.595-606 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOTOV_2019_2958149 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Feature extraction Feature point matching Image acquisition Image detection Image registration improved AKAZE Latches Matching photovoltaic Photovoltaic systems Registration Similarity solar cells Stitching |
title | Research on Image Registration Algorithm and Its Application in Photovoltaic Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Image%20Registration%20Algorithm%20and%20Its%20Application%20in%20Photovoltaic%20Images&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Zhao,%20Enyu&rft.date=2020-03-01&rft.volume=10&rft.issue=2&rft.spage=595&rft.epage=606&rft.pages=595-606&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2958149&rft_dat=%3Cproquest_RIE%3E2359904419%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359904419&rft_id=info:pmid/&rft_ieee_id=8944296&rfr_iscdi=true |