Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides
Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few yea...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2015-09, Vol.5 (5), p.1348-1356 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1356 |
---|---|
container_issue | 5 |
container_start_page | 1348 |
container_title | IEEE journal of photovoltaics |
container_volume | 5 |
creator | Steinkemper, H. Feldmann, F. Bivour, M. Hermle, M. |
description | Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides. |
doi_str_mv | 10.1109/JPHOTOV.2015.2455346 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2015_2455346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7167663</ieee_id><sourcerecordid>10_1109_JPHOTOV_2015_2455346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsNQ-gS7mBVJnMj_JLCW0tlKM0Og23ExuZCRNZCYRfXtTWj2be-DyncVHyB1nS86ZuX962eRF_raMGVfLWColpL4gs5grHQnJxOVfFym_JosQPtgUzZTWckb2z-MBvbPQ0r07jC0Mru9o39AMvHfooz22aAf3hXR1LH76Zn03gB0CXSMMo3fdOy3GrsOW5t-uxnBDrhpoAy7Od05e16si20S7_HGbPewiK1kyRE1tE6OgritpLVPCSAlNXEGMVtbGWoMGUSKCNKnmQleYpnXCkFegG7Qg5kSedq3vQ_DYlJ_eHcD_lJyVRzfl2U15dFOe3UzY7QlziPiPJFwnWgvxC8D6Y4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</title><source>IEEE Electronic Library (IEL)</source><creator>Steinkemper, H. ; Feldmann, F. ; Bivour, M. ; Hermle, M.</creator><creatorcontrib>Steinkemper, H. ; Feldmann, F. ; Bivour, M. ; Hermle, M.</creatorcontrib><description>Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2015.2455346</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conductivity ; Doping ; Metals ; Numerical models ; Numerical simulation ; Photovoltaic cells ; semiconductor device modeling ; Silicon ; Tunneling</subject><ispartof>IEEE journal of photovoltaics, 2015-09, Vol.5 (5), p.1348-1356</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</citedby><cites>FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7167663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7167663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steinkemper, H.</creatorcontrib><creatorcontrib>Feldmann, F.</creatorcontrib><creatorcontrib>Bivour, M.</creatorcontrib><creatorcontrib>Hermle, M.</creatorcontrib><title>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.</description><subject>Conductivity</subject><subject>Doping</subject><subject>Metals</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Photovoltaic cells</subject><subject>semiconductor device modeling</subject><subject>Silicon</subject><subject>Tunneling</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Kw0AUhQdRsNQ-gS7mBVJnMj_JLCW0tlKM0Og23ExuZCRNZCYRfXtTWj2be-DyncVHyB1nS86ZuX962eRF_raMGVfLWColpL4gs5grHQnJxOVfFym_JosQPtgUzZTWckb2z-MBvbPQ0r07jC0Mru9o39AMvHfooz22aAf3hXR1LH76Zn03gB0CXSMMo3fdOy3GrsOW5t-uxnBDrhpoAy7Od05e16si20S7_HGbPewiK1kyRE1tE6OgritpLVPCSAlNXEGMVtbGWoMGUSKCNKnmQleYpnXCkFegG7Qg5kSedq3vQ_DYlJ_eHcD_lJyVRzfl2U15dFOe3UzY7QlziPiPJFwnWgvxC8D6Y4w</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Steinkemper, H.</creator><creator>Feldmann, F.</creator><creator>Bivour, M.</creator><creator>Hermle, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</title><author>Steinkemper, H. ; Feldmann, F. ; Bivour, M. ; Hermle, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conductivity</topic><topic>Doping</topic><topic>Metals</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Photovoltaic cells</topic><topic>semiconductor device modeling</topic><topic>Silicon</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinkemper, H.</creatorcontrib><creatorcontrib>Feldmann, F.</creatorcontrib><creatorcontrib>Bivour, M.</creatorcontrib><creatorcontrib>Hermle, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steinkemper, H.</au><au>Feldmann, F.</au><au>Bivour, M.</au><au>Hermle, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>5</volume><issue>5</issue><spage>1348</spage><epage>1356</epage><pages>1348-1356</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.</abstract><pub>IEEE</pub><doi>10.1109/JPHOTOV.2015.2455346</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2015-09, Vol.5 (5), p.1348-1356 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOTOV_2015_2455346 |
source | IEEE Electronic Library (IEL) |
subjects | Conductivity Doping Metals Numerical models Numerical simulation Photovoltaic cells semiconductor device modeling Silicon Tunneling |
title | Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Carrier-Selective%20Electron%20Contacts%20Featuring%20Tunnel%20Oxides&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Steinkemper,%20H.&rft.date=2015-09-01&rft.volume=5&rft.issue=5&rft.spage=1348&rft.epage=1356&rft.pages=1348-1356&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2015.2455346&rft_dat=%3Ccrossref_RIE%3E10_1109_JPHOTOV_2015_2455346%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7167663&rfr_iscdi=true |