Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides

Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few yea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2015-09, Vol.5 (5), p.1348-1356
Hauptverfasser: Steinkemper, H., Feldmann, F., Bivour, M., Hermle, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1356
container_issue 5
container_start_page 1348
container_title IEEE journal of photovoltaics
container_volume 5
creator Steinkemper, H.
Feldmann, F.
Bivour, M.
Hermle, M.
description Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.
doi_str_mv 10.1109/JPHOTOV.2015.2455346
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2015_2455346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7167663</ieee_id><sourcerecordid>10_1109_JPHOTOV_2015_2455346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsNQ-gS7mBVJnMj_JLCW0tlKM0Og23ExuZCRNZCYRfXtTWj2be-DyncVHyB1nS86ZuX962eRF_raMGVfLWColpL4gs5grHQnJxOVfFym_JosQPtgUzZTWckb2z-MBvbPQ0r07jC0Mru9o39AMvHfooz22aAf3hXR1LH76Zn03gB0CXSMMo3fdOy3GrsOW5t-uxnBDrhpoAy7Od05e16si20S7_HGbPewiK1kyRE1tE6OgritpLVPCSAlNXEGMVtbGWoMGUSKCNKnmQleYpnXCkFegG7Qg5kSedq3vQ_DYlJ_eHcD_lJyVRzfl2U15dFOe3UzY7QlziPiPJFwnWgvxC8D6Y4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</title><source>IEEE Electronic Library (IEL)</source><creator>Steinkemper, H. ; Feldmann, F. ; Bivour, M. ; Hermle, M.</creator><creatorcontrib>Steinkemper, H. ; Feldmann, F. ; Bivour, M. ; Hermle, M.</creatorcontrib><description>Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2015.2455346</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conductivity ; Doping ; Metals ; Numerical models ; Numerical simulation ; Photovoltaic cells ; semiconductor device modeling ; Silicon ; Tunneling</subject><ispartof>IEEE journal of photovoltaics, 2015-09, Vol.5 (5), p.1348-1356</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</citedby><cites>FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7167663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7167663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steinkemper, H.</creatorcontrib><creatorcontrib>Feldmann, F.</creatorcontrib><creatorcontrib>Bivour, M.</creatorcontrib><creatorcontrib>Hermle, M.</creatorcontrib><title>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.</description><subject>Conductivity</subject><subject>Doping</subject><subject>Metals</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Photovoltaic cells</subject><subject>semiconductor device modeling</subject><subject>Silicon</subject><subject>Tunneling</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Kw0AUhQdRsNQ-gS7mBVJnMj_JLCW0tlKM0Og23ExuZCRNZCYRfXtTWj2be-DyncVHyB1nS86ZuX962eRF_raMGVfLWColpL4gs5grHQnJxOVfFym_JosQPtgUzZTWckb2z-MBvbPQ0r07jC0Mru9o39AMvHfooz22aAf3hXR1LH76Zn03gB0CXSMMo3fdOy3GrsOW5t-uxnBDrhpoAy7Od05e16si20S7_HGbPewiK1kyRE1tE6OgritpLVPCSAlNXEGMVtbGWoMGUSKCNKnmQleYpnXCkFegG7Qg5kSedq3vQ_DYlJ_eHcD_lJyVRzfl2U15dFOe3UzY7QlziPiPJFwnWgvxC8D6Y4w</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Steinkemper, H.</creator><creator>Feldmann, F.</creator><creator>Bivour, M.</creator><creator>Hermle, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150901</creationdate><title>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</title><author>Steinkemper, H. ; Feldmann, F. ; Bivour, M. ; Hermle, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fdc795addb4cc053944af2ba2ec4d9cc9e9ee4eea4986136be88d70e1ba6feca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conductivity</topic><topic>Doping</topic><topic>Metals</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Photovoltaic cells</topic><topic>semiconductor device modeling</topic><topic>Silicon</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinkemper, H.</creatorcontrib><creatorcontrib>Feldmann, F.</creatorcontrib><creatorcontrib>Bivour, M.</creatorcontrib><creatorcontrib>Hermle, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steinkemper, H.</au><au>Feldmann, F.</au><au>Bivour, M.</au><au>Hermle, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>5</volume><issue>5</issue><spage>1348</spage><epage>1356</epage><pages>1348-1356</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Recently, n-type Si solar cells featuring tunnel-oxide-passivated contacts have achieved remarkable conversion efficiencies of up to 24.9%. Different approaches concerning the doped Si layer, which can be amorphous, polycrystalline, or partially crystalline, have been presented over the past few years. In this paper, carrier-selective electron contacts featuring tunnel oxides are investigated by means of numerical device simulation. The influence of 1) the Si layer material, 2) the Si layer doping, 3) an additional in-diffusion in the absorber, 4) the surface recombination velocity at the oxide interface, and 5) the oxide thickness and the tunneling mass are investigated by means of an open-circuit voltage analysis, as well as a fill factor (FF) analysis. With the fundamental understanding generated in this paper, we are able to explain the excellent device performance of solar cells with carrier-selective contacts featuring tunnel oxides.</abstract><pub>IEEE</pub><doi>10.1109/JPHOTOV.2015.2455346</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2015-09, Vol.5 (5), p.1348-1356
issn 2156-3381
2156-3403
language eng
recordid cdi_crossref_primary_10_1109_JPHOTOV_2015_2455346
source IEEE Electronic Library (IEL)
subjects Conductivity
Doping
Metals
Numerical models
Numerical simulation
Photovoltaic cells
semiconductor device modeling
Silicon
Tunneling
title Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Carrier-Selective%20Electron%20Contacts%20Featuring%20Tunnel%20Oxides&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Steinkemper,%20H.&rft.date=2015-09-01&rft.volume=5&rft.issue=5&rft.spage=1348&rft.epage=1356&rft.pages=1348-1356&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2015.2455346&rft_dat=%3Ccrossref_RIE%3E10_1109_JPHOTOV_2015_2455346%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7167663&rfr_iscdi=true