Advanced Bulk Defect Passivation for Silicon Solar Cells

Through an advanced hydrogenation process that involves controlling and manipulating the hydrogen charge state, substantial increases in the bulk minority carrier lifetime are observed for standard commercial grade boron-doped Czochralski grown silicon wafers from 250-500 μs to 1.3-1.4 ms and from 8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2014-01, Vol.4 (1), p.88-95
Hauptverfasser: Hallam, Brett J., Hamer, Phill G., Wenham, Stuart R., Abbott, Malcolm D., Sugianto, Adeline, Wenham, Alison M., Chan, Catherine E., GuangQi Xu, Kraiem, Jed, Degoulange, Julien, Einhaus, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through an advanced hydrogenation process that involves controlling and manipulating the hydrogen charge state, substantial increases in the bulk minority carrier lifetime are observed for standard commercial grade boron-doped Czochralski grown silicon wafers from 250-500 μs to 1.3-1.4 ms and from 8 to 550 μs on p-type Czochralski wafers grown from upgraded metallurgical grade silicon. However, the passivation is reversible, whereby the passivated defects can be reactivated during subsequent processes. With appropriate processing that involves controlling the charge state of hydrogen, the passivation can be retained on finished devices yielding independently confirmed voltages on cells fabricated using standard commercial grade boron-doped Czochralski grown silicon over 680 mV. Hence, it appears that the charge state of hydrogen plays an important role in determining the reactivity of the atomic hydrogen and, therefore, ability to passivate defects.
ISSN:2156-3381
2156-3403
DOI:10.1109/JPHOTOV.2013.2281732