Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit
Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impa...
Gespeichert in:
Veröffentlicht in: | IEEE Journal of Photovoltaics 2012-07, Vol.2 (3), p.303-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 3 |
container_start_page | 303 |
container_title | IEEE Journal of Photovoltaics |
container_volume | 2 |
creator | Miller, Owen D. Yablonovitch, Eli Kurtz, Sarah R. |
description | Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%. |
doi_str_mv | 10.1109/JPHOTOV.2012.2198434 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2012_2198434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6213058</ieee_id><sourcerecordid>10_1109_JPHOTOV_2012_2198434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gV4E7zuT5mPt5RjTTQpTNr2TkiZnNtqlI8nA_Xs7Vj0354P3fTk8CN1RMqaU5A_PL4vVZvU-TglNxynNM874BRqkVMiEccIu_2aW0Ws0CuGLdCWJkJIP0Mc6-tZ94qWL4J1qsHIGz3_6pTjsrIOgwWnAKuB12yiPZ9A0AU_3e98qXeNYA17Xrf5u4Ji8HsCGAB4XdmfjDbraqibAqO9D9PY438wWSbF6Ws6mRaI5FTExgpqMitRUBAzfakOYhgmnjBggRFeku0iaM0aYMirPVJZpXYkcRDWhlOdsiO7PuW2ItgzaRtC1bp0DHUtKpMwnshPxs0j7NgQP23Lv7U75Y6coTyjLHmV5Qln2KDvb7dlmAeDfItPuO5GxX9sncLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, Owen D. ; Yablonovitch, Eli ; Kurtz, Sarah R.</creator><creatorcontrib>Miller, Owen D. ; Yablonovitch, Eli ; Kurtz, Sarah R. ; Energy Frontier Research Centers (EFRC) ; Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2012.2198434</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Absorption ; External luminescence ; GaAs ; Gallium arsenide ; Luminescence ; Mirrors ; Photonics ; Photovoltaic cells ; Shockley-Queisser (SQ) limit ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; solar cells</subject><ispartof>IEEE Journal of Photovoltaics, 2012-07, Vol.2 (3), p.303-311</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</citedby><cites>FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6213058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6213058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1066976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Owen D.</creatorcontrib><creatorcontrib>Yablonovitch, Eli</creatorcontrib><creatorcontrib>Kurtz, Sarah R.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</title><title>IEEE Journal of Photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.</description><subject>Absorption</subject><subject>External luminescence</subject><subject>GaAs</subject><subject>Gallium arsenide</subject><subject>Luminescence</subject><subject>Mirrors</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Shockley-Queisser (SQ) limit</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>solar cells</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOZ-gV4E7zuT5mPt5RjTTQpTNr2TkiZnNtqlI8nA_Xs7Vj0354P3fTk8CN1RMqaU5A_PL4vVZvU-TglNxynNM874BRqkVMiEccIu_2aW0Ws0CuGLdCWJkJIP0Mc6-tZ94qWL4J1qsHIGz3_6pTjsrIOgwWnAKuB12yiPZ9A0AU_3e98qXeNYA17Xrf5u4Ji8HsCGAB4XdmfjDbraqibAqO9D9PY438wWSbF6Ws6mRaI5FTExgpqMitRUBAzfakOYhgmnjBggRFeku0iaM0aYMirPVJZpXYkcRDWhlOdsiO7PuW2ItgzaRtC1bp0DHUtKpMwnshPxs0j7NgQP23Lv7U75Y6coTyjLHmV5Qln2KDvb7dlmAeDfItPuO5GxX9sncLw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Miller, Owen D.</creator><creator>Yablonovitch, Eli</creator><creator>Kurtz, Sarah R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120701</creationdate><title>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</title><author>Miller, Owen D. ; Yablonovitch, Eli ; Kurtz, Sarah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absorption</topic><topic>External luminescence</topic><topic>GaAs</topic><topic>Gallium arsenide</topic><topic>Luminescence</topic><topic>Mirrors</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Shockley-Queisser (SQ) limit</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Owen D.</creatorcontrib><creatorcontrib>Yablonovitch, Eli</creatorcontrib><creatorcontrib>Kurtz, Sarah R.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE Journal of Photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miller, Owen D.</au><au>Yablonovitch, Eli</au><au>Kurtz, Sarah R.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</atitle><jtitle>IEEE Journal of Photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>2</volume><issue>3</issue><spage>303</spage><epage>311</epage><pages>303-311</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2012.2198434</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE Journal of Photovoltaics, 2012-07, Vol.2 (3), p.303-311 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOTOV_2012_2198434 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption External luminescence GaAs Gallium arsenide Luminescence Mirrors Photonics Photovoltaic cells Shockley-Queisser (SQ) limit solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) solar cells |
title | Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Internal%20and%20External%20Luminescence%20as%20Solar%20Cells%20Approach%20the%20Shockley-Queisser%20Limit&rft.jtitle=IEEE%20Journal%20of%20Photovoltaics&rft.au=Miller,%20Owen%20D.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-07-01&rft.volume=2&rft.issue=3&rft.spage=303&rft.epage=311&rft.pages=303-311&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2012.2198434&rft_dat=%3Ccrossref_RIE%3E10_1109_JPHOTOV_2012_2198434%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6213058&rfr_iscdi=true |