Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit

Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Journal of Photovoltaics 2012-07, Vol.2 (3), p.303-311
Hauptverfasser: Miller, Owen D., Yablonovitch, Eli, Kurtz, Sarah R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 3
container_start_page 303
container_title IEEE Journal of Photovoltaics
container_volume 2
creator Miller, Owen D.
Yablonovitch, Eli
Kurtz, Sarah R.
description Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.
doi_str_mv 10.1109/JPHOTOV.2012.2198434
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2012_2198434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6213058</ieee_id><sourcerecordid>10_1109_JPHOTOV_2012_2198434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gV4E7zuT5mPt5RjTTQpTNr2TkiZnNtqlI8nA_Xs7Vj0354P3fTk8CN1RMqaU5A_PL4vVZvU-TglNxynNM874BRqkVMiEccIu_2aW0Ws0CuGLdCWJkJIP0Mc6-tZ94qWL4J1qsHIGz3_6pTjsrIOgwWnAKuB12yiPZ9A0AU_3e98qXeNYA17Xrf5u4Ji8HsCGAB4XdmfjDbraqibAqO9D9PY438wWSbF6Ws6mRaI5FTExgpqMitRUBAzfakOYhgmnjBggRFeku0iaM0aYMirPVJZpXYkcRDWhlOdsiO7PuW2ItgzaRtC1bp0DHUtKpMwnshPxs0j7NgQP23Lv7U75Y6coTyjLHmV5Qln2KDvb7dlmAeDfItPuO5GxX9sncLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, Owen D. ; Yablonovitch, Eli ; Kurtz, Sarah R.</creator><creatorcontrib>Miller, Owen D. ; Yablonovitch, Eli ; Kurtz, Sarah R. ; Energy Frontier Research Centers (EFRC) ; Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2012.2198434</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Absorption ; External luminescence ; GaAs ; Gallium arsenide ; Luminescence ; Mirrors ; Photonics ; Photovoltaic cells ; Shockley-Queisser (SQ) limit ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; solar cells</subject><ispartof>IEEE Journal of Photovoltaics, 2012-07, Vol.2 (3), p.303-311</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</citedby><cites>FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6213058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6213058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1066976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Owen D.</creatorcontrib><creatorcontrib>Yablonovitch, Eli</creatorcontrib><creatorcontrib>Kurtz, Sarah R.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</title><title>IEEE Journal of Photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.</description><subject>Absorption</subject><subject>External luminescence</subject><subject>GaAs</subject><subject>Gallium arsenide</subject><subject>Luminescence</subject><subject>Mirrors</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Shockley-Queisser (SQ) limit</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>solar cells</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOZ-gV4E7zuT5mPt5RjTTQpTNr2TkiZnNtqlI8nA_Xs7Vj0354P3fTk8CN1RMqaU5A_PL4vVZvU-TglNxynNM874BRqkVMiEccIu_2aW0Ws0CuGLdCWJkJIP0Mc6-tZ94qWL4J1qsHIGz3_6pTjsrIOgwWnAKuB12yiPZ9A0AU_3e98qXeNYA17Xrf5u4Ji8HsCGAB4XdmfjDbraqibAqO9D9PY438wWSbF6Ws6mRaI5FTExgpqMitRUBAzfakOYhgmnjBggRFeku0iaM0aYMirPVJZpXYkcRDWhlOdsiO7PuW2ItgzaRtC1bp0DHUtKpMwnshPxs0j7NgQP23Lv7U75Y6coTyjLHmV5Qln2KDvb7dlmAeDfItPuO5GxX9sncLw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Miller, Owen D.</creator><creator>Yablonovitch, Eli</creator><creator>Kurtz, Sarah R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120701</creationdate><title>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</title><author>Miller, Owen D. ; Yablonovitch, Eli ; Kurtz, Sarah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d51d8152db0ed4fcd03ce74130de00cb0cd06193303ada98a88ccb59e5b711493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absorption</topic><topic>External luminescence</topic><topic>GaAs</topic><topic>Gallium arsenide</topic><topic>Luminescence</topic><topic>Mirrors</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Shockley-Queisser (SQ) limit</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Owen D.</creatorcontrib><creatorcontrib>Yablonovitch, Eli</creatorcontrib><creatorcontrib>Kurtz, Sarah R.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE Journal of Photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miller, Owen D.</au><au>Yablonovitch, Eli</au><au>Kurtz, Sarah R.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit</atitle><jtitle>IEEE Journal of Photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>2</volume><issue>3</issue><spage>303</spage><epage>311</epage><pages>303-311</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley-Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2012.2198434</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE Journal of Photovoltaics, 2012-07, Vol.2 (3), p.303-311
issn 2156-3381
2156-3403
language eng
recordid cdi_crossref_primary_10_1109_JPHOTOV_2012_2198434
source IEEE Electronic Library (IEL)
subjects Absorption
External luminescence
GaAs
Gallium arsenide
Luminescence
Mirrors
Photonics
Photovoltaic cells
Shockley-Queisser (SQ) limit
solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)
solar cells
title Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Internal%20and%20External%20Luminescence%20as%20Solar%20Cells%20Approach%20the%20Shockley-Queisser%20Limit&rft.jtitle=IEEE%20Journal%20of%20Photovoltaics&rft.au=Miller,%20Owen%20D.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-07-01&rft.volume=2&rft.issue=3&rft.spage=303&rft.epage=311&rft.pages=303-311&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2012.2198434&rft_dat=%3Ccrossref_RIE%3E10_1109_JPHOTOV_2012_2198434%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6213058&rfr_iscdi=true