Exploiting Space-Time-Frequency Diversity With MIMO-OFDM for Underwater Acoustic Communications

Underwater acoustic (UWA) channels exhibit time-varying fading statistics, thus a coded modulation scheme optimally designed for a specific model (e.g., Rayleigh fading) will perform poorly when the channel statistics change. Exploiting diversity via coded modulation is a robust approach to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of oceanic engineering 2011-10, Vol.36 (4), p.502-513
Hauptverfasser: Pelekanakis, Konstantinos, Baggeroer, Arthur B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 4
container_start_page 502
container_title IEEE journal of oceanic engineering
container_volume 36
creator Pelekanakis, Konstantinos
Baggeroer, Arthur B.
description Underwater acoustic (UWA) channels exhibit time-varying fading statistics, thus a coded modulation scheme optimally designed for a specific model (e.g., Rayleigh fading) will perform poorly when the channel statistics change. Exploiting diversity via coded modulation is a robust approach to improve the reliability of the acoustic link in a variety of channel conditions. Two coded modulation schemes drawn from the terrestrial radio literature are compared in terms of their bit error rate (BER). The first scheme combines trellis coded modulation (TCM) based on an 8-phase-shift keying (8-PSK) signal set and symbol interleaving. The second scheme is based on bit-interleaved coded modulation (BICM), which includes a convolutional encoder, a bit interleaver, and a 16-quadrature-amplitude-modulation (16-QAM) signal set. These schemes, which are designed to have the same bit rate and decoding complexity, are tested under two scenarios. In the first scenario, a single-input-multiple-output (SIMO) system is implemented by means of orthogonal frequency-division multiplexing (OFDM) modulation. In the second scenario, a multiple-input-multiple-output (MIMO) system is implemented and each of the coded modulation scheme is coupled with a 3/4-rate space-time block code (STBC) before applying OFDM. Analyzing both simulated and experimental data, the following results, which also hold for terrestrial radio, are confirmed: coded modulation schemes emphasizing higher Hamming distance (such as BICM) yield a lower error rate when spatial diversity is very limited (first scenario). On the other hand, coded modulation schemes emphasizing higher free Euclidean distance (such as TCM) demonstrate a lower error rate when spatial diversity is sufficiently high (second scenario).
doi_str_mv 10.1109/JOE.2011.2165758
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JOE_2011_2165758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6032716</ieee_id><sourcerecordid>1257875136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-56d47a2984fcb10f19441cb24632bc224034cef747de42295d51fade4e16fde73</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEqWwI7FETCwpPn_WIyotH6LqQCtGK3UuYNQkxU6B_nuMihhYmO6G5z3d3UPIKdABADWX97PxgFGAAQMltRzukR5IOcxBGdgnPcqVyA2V5pAcxfhKKQihTY_Y8ed61frON8_Z47pwmM99jfkk4NsGG7fNrv07hui7bfbku5dsejed5bPJ9TSr2pAtmhLDR9FhyK5cu4mdd9moretN413R-baJx-SgKlYRT35qnywm4_noNn-Y3dyNrh5yJyjvcqlKoQtmhqJyS6AVGCHALZlQnC0dYwkSDistdImCMSNLCVWRegRVlah5n1zs5q5DmzaPna19dLhaFQ2mxSxoxYBRw_j_KJN6qCVwldDzP-hruwlNOsQaStM3DZcJojvIhTbGgJVdB18XYWuB2m83Nrmx327sj5sUOdtFPCL-4opypkHxLz8riSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900059935</pqid></control><display><type>article</type><title>Exploiting Space-Time-Frequency Diversity With MIMO-OFDM for Underwater Acoustic Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Pelekanakis, Konstantinos ; Baggeroer, Arthur B.</creator><creatorcontrib>Pelekanakis, Konstantinos ; Baggeroer, Arthur B.</creatorcontrib><description>Underwater acoustic (UWA) channels exhibit time-varying fading statistics, thus a coded modulation scheme optimally designed for a specific model (e.g., Rayleigh fading) will perform poorly when the channel statistics change. Exploiting diversity via coded modulation is a robust approach to improve the reliability of the acoustic link in a variety of channel conditions. Two coded modulation schemes drawn from the terrestrial radio literature are compared in terms of their bit error rate (BER). The first scheme combines trellis coded modulation (TCM) based on an 8-phase-shift keying (8-PSK) signal set and symbol interleaving. The second scheme is based on bit-interleaved coded modulation (BICM), which includes a convolutional encoder, a bit interleaver, and a 16-quadrature-amplitude-modulation (16-QAM) signal set. These schemes, which are designed to have the same bit rate and decoding complexity, are tested under two scenarios. In the first scenario, a single-input-multiple-output (SIMO) system is implemented by means of orthogonal frequency-division multiplexing (OFDM) modulation. In the second scenario, a multiple-input-multiple-output (MIMO) system is implemented and each of the coded modulation scheme is coupled with a 3/4-rate space-time block code (STBC) before applying OFDM. Analyzing both simulated and experimental data, the following results, which also hold for terrestrial radio, are confirmed: coded modulation schemes emphasizing higher Hamming distance (such as BICM) yield a lower error rate when spatial diversity is very limited (first scenario). On the other hand, coded modulation schemes emphasizing higher free Euclidean distance (such as TCM) demonstrate a lower error rate when spatial diversity is sufficiently high (second scenario).</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2011.2165758</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit-interleaved coded modulation (BICM) ; Block codes ; Channels ; coded orthogonal frequency-division multiplexing (OFDM) ; Codes ; Encoders ; Fading ; Interleaved codes ; Marine ; MIMO-OFDM ; Modulation ; OFDM ; Orthogonal Frequency Division Multiplexing ; Radio ; Space time codes ; space-time block code (STBC) ; space-time-frequency diversity ; Statistics ; trellis coded modulation (TCM) ; underwater acoustic (UWA) communications ; Underwater acoustics ; Underwater communication</subject><ispartof>IEEE journal of oceanic engineering, 2011-10, Vol.36 (4), p.502-513</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-56d47a2984fcb10f19441cb24632bc224034cef747de42295d51fade4e16fde73</citedby><cites>FETCH-LOGICAL-c403t-56d47a2984fcb10f19441cb24632bc224034cef747de42295d51fade4e16fde73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6032716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6032716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pelekanakis, Konstantinos</creatorcontrib><creatorcontrib>Baggeroer, Arthur B.</creatorcontrib><title>Exploiting Space-Time-Frequency Diversity With MIMO-OFDM for Underwater Acoustic Communications</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Underwater acoustic (UWA) channels exhibit time-varying fading statistics, thus a coded modulation scheme optimally designed for a specific model (e.g., Rayleigh fading) will perform poorly when the channel statistics change. Exploiting diversity via coded modulation is a robust approach to improve the reliability of the acoustic link in a variety of channel conditions. Two coded modulation schemes drawn from the terrestrial radio literature are compared in terms of their bit error rate (BER). The first scheme combines trellis coded modulation (TCM) based on an 8-phase-shift keying (8-PSK) signal set and symbol interleaving. The second scheme is based on bit-interleaved coded modulation (BICM), which includes a convolutional encoder, a bit interleaver, and a 16-quadrature-amplitude-modulation (16-QAM) signal set. These schemes, which are designed to have the same bit rate and decoding complexity, are tested under two scenarios. In the first scenario, a single-input-multiple-output (SIMO) system is implemented by means of orthogonal frequency-division multiplexing (OFDM) modulation. In the second scenario, a multiple-input-multiple-output (MIMO) system is implemented and each of the coded modulation scheme is coupled with a 3/4-rate space-time block code (STBC) before applying OFDM. Analyzing both simulated and experimental data, the following results, which also hold for terrestrial radio, are confirmed: coded modulation schemes emphasizing higher Hamming distance (such as BICM) yield a lower error rate when spatial diversity is very limited (first scenario). On the other hand, coded modulation schemes emphasizing higher free Euclidean distance (such as TCM) demonstrate a lower error rate when spatial diversity is sufficiently high (second scenario).</description><subject>Bit-interleaved coded modulation (BICM)</subject><subject>Block codes</subject><subject>Channels</subject><subject>coded orthogonal frequency-division multiplexing (OFDM)</subject><subject>Codes</subject><subject>Encoders</subject><subject>Fading</subject><subject>Interleaved codes</subject><subject>Marine</subject><subject>MIMO-OFDM</subject><subject>Modulation</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Radio</subject><subject>Space time codes</subject><subject>space-time block code (STBC)</subject><subject>space-time-frequency diversity</subject><subject>Statistics</subject><subject>trellis coded modulation (TCM)</subject><subject>underwater acoustic (UWA) communications</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkT1PwzAQhi0EEqWwI7FETCwpPn_WIyotH6LqQCtGK3UuYNQkxU6B_nuMihhYmO6G5z3d3UPIKdABADWX97PxgFGAAQMltRzukR5IOcxBGdgnPcqVyA2V5pAcxfhKKQihTY_Y8ed61frON8_Z47pwmM99jfkk4NsGG7fNrv07hui7bfbku5dsejed5bPJ9TSr2pAtmhLDR9FhyK5cu4mdd9moretN413R-baJx-SgKlYRT35qnywm4_noNn-Y3dyNrh5yJyjvcqlKoQtmhqJyS6AVGCHALZlQnC0dYwkSDistdImCMSNLCVWRegRVlah5n1zs5q5DmzaPna19dLhaFQ2mxSxoxYBRw_j_KJN6qCVwldDzP-hruwlNOsQaStM3DZcJojvIhTbGgJVdB18XYWuB2m83Nrmx327sj5sUOdtFPCL-4opypkHxLz8riSw</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Pelekanakis, Konstantinos</creator><creator>Baggeroer, Arthur B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201110</creationdate><title>Exploiting Space-Time-Frequency Diversity With MIMO-OFDM for Underwater Acoustic Communications</title><author>Pelekanakis, Konstantinos ; Baggeroer, Arthur B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-56d47a2984fcb10f19441cb24632bc224034cef747de42295d51fade4e16fde73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bit-interleaved coded modulation (BICM)</topic><topic>Block codes</topic><topic>Channels</topic><topic>coded orthogonal frequency-division multiplexing (OFDM)</topic><topic>Codes</topic><topic>Encoders</topic><topic>Fading</topic><topic>Interleaved codes</topic><topic>Marine</topic><topic>MIMO-OFDM</topic><topic>Modulation</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Radio</topic><topic>Space time codes</topic><topic>space-time block code (STBC)</topic><topic>space-time-frequency diversity</topic><topic>Statistics</topic><topic>trellis coded modulation (TCM)</topic><topic>underwater acoustic (UWA) communications</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelekanakis, Konstantinos</creatorcontrib><creatorcontrib>Baggeroer, Arthur B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pelekanakis, Konstantinos</au><au>Baggeroer, Arthur B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Space-Time-Frequency Diversity With MIMO-OFDM for Underwater Acoustic Communications</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2011-10</date><risdate>2011</risdate><volume>36</volume><issue>4</issue><spage>502</spage><epage>513</epage><pages>502-513</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Underwater acoustic (UWA) channels exhibit time-varying fading statistics, thus a coded modulation scheme optimally designed for a specific model (e.g., Rayleigh fading) will perform poorly when the channel statistics change. Exploiting diversity via coded modulation is a robust approach to improve the reliability of the acoustic link in a variety of channel conditions. Two coded modulation schemes drawn from the terrestrial radio literature are compared in terms of their bit error rate (BER). The first scheme combines trellis coded modulation (TCM) based on an 8-phase-shift keying (8-PSK) signal set and symbol interleaving. The second scheme is based on bit-interleaved coded modulation (BICM), which includes a convolutional encoder, a bit interleaver, and a 16-quadrature-amplitude-modulation (16-QAM) signal set. These schemes, which are designed to have the same bit rate and decoding complexity, are tested under two scenarios. In the first scenario, a single-input-multiple-output (SIMO) system is implemented by means of orthogonal frequency-division multiplexing (OFDM) modulation. In the second scenario, a multiple-input-multiple-output (MIMO) system is implemented and each of the coded modulation scheme is coupled with a 3/4-rate space-time block code (STBC) before applying OFDM. Analyzing both simulated and experimental data, the following results, which also hold for terrestrial radio, are confirmed: coded modulation schemes emphasizing higher Hamming distance (such as BICM) yield a lower error rate when spatial diversity is very limited (first scenario). On the other hand, coded modulation schemes emphasizing higher free Euclidean distance (such as TCM) demonstrate a lower error rate when spatial diversity is sufficiently high (second scenario).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2011.2165758</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2011-10, Vol.36 (4), p.502-513
issn 0364-9059
1558-1691
language eng
recordid cdi_crossref_primary_10_1109_JOE_2011_2165758
source IEEE Electronic Library (IEL)
subjects Bit-interleaved coded modulation (BICM)
Block codes
Channels
coded orthogonal frequency-division multiplexing (OFDM)
Codes
Encoders
Fading
Interleaved codes
Marine
MIMO-OFDM
Modulation
OFDM
Orthogonal Frequency Division Multiplexing
Radio
Space time codes
space-time block code (STBC)
space-time-frequency diversity
Statistics
trellis coded modulation (TCM)
underwater acoustic (UWA) communications
Underwater acoustics
Underwater communication
title Exploiting Space-Time-Frequency Diversity With MIMO-OFDM for Underwater Acoustic Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Space-Time-Frequency%20Diversity%20With%20MIMO-OFDM%20for%20Underwater%20Acoustic%20Communications&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Pelekanakis,%20Konstantinos&rft.date=2011-10&rft.volume=36&rft.issue=4&rft.spage=502&rft.epage=513&rft.pages=502-513&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2011.2165758&rft_dat=%3Cproquest_RIE%3E1257875136%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900059935&rft_id=info:pmid/&rft_ieee_id=6032716&rfr_iscdi=true