Utilizing High-Frequency Acoustic Backscatter to Estimate Bottom Sand Ripple Parameters

In some applications of underwater acoustics, it is important to know the ripple structure on shallow-water sediments. For example, the prediction of buried target detection via sound scattering by ripples depends critically on the ripple height and spatial wavelength. Another example is the study o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of oceanic engineering 2009-10, Vol.34 (4), p.431-443
Hauptverfasser: Dajun Tang, Williams, K.L., Thorsos, E.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 4
container_start_page 431
container_title IEEE journal of oceanic engineering
container_volume 34
creator Dajun Tang
Williams, K.L.
Thorsos, E.I.
description In some applications of underwater acoustics, it is important to know the ripple structure on shallow-water sediments. For example, the prediction of buried target detection via sound scattering by ripples depends critically on the ripple height and spatial wavelength. Another example is the study of sediment transport, where knowing the ripple structure and its evolution over time helps to understand the forcing on the bottom and the response of sediments. Here, backscatter data from a 300-kHz system are used to show that ripple wavelength and height can be estimated from backscatter images via a simple inversion formula. The inversion results are consistent with in situ measurements of the ripple field using an independent measurement system. Motivated by the backscatter data, we have developed a time-domain numerical model to simulate scattering of high-frequency sound by a ripple field. This model treats small-scale scatterers as Lambertian scatterers distributed randomly on the large-scale ripple field. Numerical simulations are conducted to investigate the conditions under which remote sensing of bottom ripple heights, wavelength, and its power spectrum is possible.
doi_str_mv 10.1109/JOE.2009.2015402
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JOE_2009_2015402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4811939</ieee_id><sourcerecordid>21254275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-6447e747807bfe0f329c3c48437e268b851e8f556596b69f44ae495f4e5cfaf83</originalsourceid><addsrcrecordid>eNqNkUtLQzEQhYMoWKt7wU1woauryc3jJkuV-kKoqMVlSONEb72PmqSL-uuNtLhwIW5mYPjOcGYOQvuUnFBK9OnteHRSEqJzoYKTcgMNqBCqoFLTTTQgTPJCE6G30U6MM0Io55UeoOdJqpv6s-5e8XX9-lZcBvhYQOeW-Mz1i5hqh8-te4_OpgQBpx6P8rC1CfB5n1Lf4kfbveCHej5vAN_bYFvIYNxFW942EfbWfYgml6Oni-vibnx1c3F2VzimeCpkdgEVrxSpph6IZ6V2zHHFWQWlVFMlKCgvhBRaTqX2nFvgWngOwnnrFRui49Xeeeiz8ZhMW0cHTWM7yP6NklVerynL5NGfZElLwUtd_hOsRAYPf4GzfhG6fK5RouJMMkkzRFaQC32MAbyZh_y_sDSUmO_kTE7OfCdn1sllycFKUgPAD84VpZpp9gUpkZMH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857436361</pqid></control><display><type>article</type><title>Utilizing High-Frequency Acoustic Backscatter to Estimate Bottom Sand Ripple Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Dajun Tang ; Williams, K.L. ; Thorsos, E.I.</creator><creatorcontrib>Dajun Tang ; Williams, K.L. ; Thorsos, E.I.</creatorcontrib><description>In some applications of underwater acoustics, it is important to know the ripple structure on shallow-water sediments. For example, the prediction of buried target detection via sound scattering by ripples depends critically on the ripple height and spatial wavelength. Another example is the study of sediment transport, where knowing the ripple structure and its evolution over time helps to understand the forcing on the bottom and the response of sediments. Here, backscatter data from a 300-kHz system are used to show that ripple wavelength and height can be estimated from backscatter images via a simple inversion formula. The inversion results are consistent with in situ measurements of the ripple field using an independent measurement system. Motivated by the backscatter data, we have developed a time-domain numerical model to simulate scattering of high-frequency sound by a ripple field. This model treats small-scale scatterers as Lambertian scatterers distributed randomly on the large-scale ripple field. Numerical simulations are conducted to investigate the conditions under which remote sensing of bottom ripple heights, wavelength, and its power spectrum is possible.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2009.2015402</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic scattering ; Acoustics ; Backscatter ; Backscattering ; Computer simulation ; Inversions ; Marine ; Mathematical models ; Numerical models ; Numerical simulation ; Object detection ; Power system modeling ; Remote sensing ; Ripples ; Sand ; sediment ; Sediment transport ; Sediments ; Time domain analysis ; Underwater acoustics ; Wavelength measurement ; Wavelengths</subject><ispartof>IEEE journal of oceanic engineering, 2009-10, Vol.34 (4), p.431-443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-6447e747807bfe0f329c3c48437e268b851e8f556596b69f44ae495f4e5cfaf83</citedby><cites>FETCH-LOGICAL-c384t-6447e747807bfe0f329c3c48437e268b851e8f556596b69f44ae495f4e5cfaf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4811939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4811939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dajun Tang</creatorcontrib><creatorcontrib>Williams, K.L.</creatorcontrib><creatorcontrib>Thorsos, E.I.</creatorcontrib><title>Utilizing High-Frequency Acoustic Backscatter to Estimate Bottom Sand Ripple Parameters</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>In some applications of underwater acoustics, it is important to know the ripple structure on shallow-water sediments. For example, the prediction of buried target detection via sound scattering by ripples depends critically on the ripple height and spatial wavelength. Another example is the study of sediment transport, where knowing the ripple structure and its evolution over time helps to understand the forcing on the bottom and the response of sediments. Here, backscatter data from a 300-kHz system are used to show that ripple wavelength and height can be estimated from backscatter images via a simple inversion formula. The inversion results are consistent with in situ measurements of the ripple field using an independent measurement system. Motivated by the backscatter data, we have developed a time-domain numerical model to simulate scattering of high-frequency sound by a ripple field. This model treats small-scale scatterers as Lambertian scatterers distributed randomly on the large-scale ripple field. Numerical simulations are conducted to investigate the conditions under which remote sensing of bottom ripple heights, wavelength, and its power spectrum is possible.</description><subject>Acoustic scattering</subject><subject>Acoustics</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Computer simulation</subject><subject>Inversions</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Object detection</subject><subject>Power system modeling</subject><subject>Remote sensing</subject><subject>Ripples</subject><subject>Sand</subject><subject>sediment</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Time domain analysis</subject><subject>Underwater acoustics</subject><subject>Wavelength measurement</subject><subject>Wavelengths</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUtLQzEQhYMoWKt7wU1woauryc3jJkuV-kKoqMVlSONEb72PmqSL-uuNtLhwIW5mYPjOcGYOQvuUnFBK9OnteHRSEqJzoYKTcgMNqBCqoFLTTTQgTPJCE6G30U6MM0Io55UeoOdJqpv6s-5e8XX9-lZcBvhYQOeW-Mz1i5hqh8-te4_OpgQBpx6P8rC1CfB5n1Lf4kfbveCHej5vAN_bYFvIYNxFW942EfbWfYgml6Oni-vibnx1c3F2VzimeCpkdgEVrxSpph6IZ6V2zHHFWQWlVFMlKCgvhBRaTqX2nFvgWngOwnnrFRui49Xeeeiz8ZhMW0cHTWM7yP6NklVerynL5NGfZElLwUtd_hOsRAYPf4GzfhG6fK5RouJMMkkzRFaQC32MAbyZh_y_sDSUmO_kTE7OfCdn1sllycFKUgPAD84VpZpp9gUpkZMH</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Dajun Tang</creator><creator>Williams, K.L.</creator><creator>Thorsos, E.I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20091001</creationdate><title>Utilizing High-Frequency Acoustic Backscatter to Estimate Bottom Sand Ripple Parameters</title><author>Dajun Tang ; Williams, K.L. ; Thorsos, E.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-6447e747807bfe0f329c3c48437e268b851e8f556596b69f44ae495f4e5cfaf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic scattering</topic><topic>Acoustics</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Computer simulation</topic><topic>Inversions</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Object detection</topic><topic>Power system modeling</topic><topic>Remote sensing</topic><topic>Ripples</topic><topic>Sand</topic><topic>sediment</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Time domain analysis</topic><topic>Underwater acoustics</topic><topic>Wavelength measurement</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dajun Tang</creatorcontrib><creatorcontrib>Williams, K.L.</creatorcontrib><creatorcontrib>Thorsos, E.I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dajun Tang</au><au>Williams, K.L.</au><au>Thorsos, E.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing High-Frequency Acoustic Backscatter to Estimate Bottom Sand Ripple Parameters</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>34</volume><issue>4</issue><spage>431</spage><epage>443</epage><pages>431-443</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>In some applications of underwater acoustics, it is important to know the ripple structure on shallow-water sediments. For example, the prediction of buried target detection via sound scattering by ripples depends critically on the ripple height and spatial wavelength. Another example is the study of sediment transport, where knowing the ripple structure and its evolution over time helps to understand the forcing on the bottom and the response of sediments. Here, backscatter data from a 300-kHz system are used to show that ripple wavelength and height can be estimated from backscatter images via a simple inversion formula. The inversion results are consistent with in situ measurements of the ripple field using an independent measurement system. Motivated by the backscatter data, we have developed a time-domain numerical model to simulate scattering of high-frequency sound by a ripple field. This model treats small-scale scatterers as Lambertian scatterers distributed randomly on the large-scale ripple field. Numerical simulations are conducted to investigate the conditions under which remote sensing of bottom ripple heights, wavelength, and its power spectrum is possible.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2009.2015402</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2009-10, Vol.34 (4), p.431-443
issn 0364-9059
1558-1691
language eng
recordid cdi_crossref_primary_10_1109_JOE_2009_2015402
source IEEE Electronic Library (IEL)
subjects Acoustic scattering
Acoustics
Backscatter
Backscattering
Computer simulation
Inversions
Marine
Mathematical models
Numerical models
Numerical simulation
Object detection
Power system modeling
Remote sensing
Ripples
Sand
sediment
Sediment transport
Sediments
Time domain analysis
Underwater acoustics
Wavelength measurement
Wavelengths
title Utilizing High-Frequency Acoustic Backscatter to Estimate Bottom Sand Ripple Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20High-Frequency%20Acoustic%20Backscatter%20to%20Estimate%20Bottom%20Sand%20Ripple%20Parameters&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Dajun%20Tang&rft.date=2009-10-01&rft.volume=34&rft.issue=4&rft.spage=431&rft.epage=443&rft.pages=431-443&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2009.2015402&rft_dat=%3Cproquest_RIE%3E21254275%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857436361&rft_id=info:pmid/&rft_ieee_id=4811939&rfr_iscdi=true