A Silicon Migration Model Incorporating Anisotropic Surface Energy and Non-Uniform Diffusivity
Silicon migration is a process that can produce seamless, single-crystal silicon cavities in a single mask layer, greatly simplifying process flows for forming various cavity- and channel-based structures. However, controlling the dimensions of the final cavity and membrane thickness is complex and...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2022-12, Vol.31 (6), p.943-950 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 950 |
---|---|
container_issue | 6 |
container_start_page | 943 |
container_title | Journal of microelectromechanical systems |
container_volume | 31 |
creator | Wong, Han Xuan Lee, Joshua En-Yuan |
description | Silicon migration is a process that can produce seamless, single-crystal silicon cavities in a single mask layer, greatly simplifying process flows for forming various cavity- and channel-based structures. However, controlling the dimensions of the final cavity and membrane thickness is complex and difficult to predict. To address this challenge, we present an efficient and accurate method of simulating silicon migration, which advances the state of art in three ways. First, it accounts for anisotropic surface energy. Second, it uniquely models selective migration. Third, the method is implemented in Python, an open source and highly pervasive programming language. We validate the model using experimental results from the literature, and we show that incorporating anisotropy is critical for simulating high aspect ratio, high density etch hole arrays. We also find indications in the simulations of selective migration that anisotropy may be less significant for very large curvature (radius less than 100 nm) features. Lastly, we use this new model to predict the relationship between layout and annealing time for a given set of final objective cavity and membrane dimensions. [2022-0128] |
doi_str_mv | 10.1109/JMEMS.2022.3200007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2022_3200007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9868233</ieee_id><sourcerecordid>2742703016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-d2dc6ec2a55ba1eef2325abb2033def4e38b573dce075e768422f95a3aed012f3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRCMEEqXwA3CxxDnFXsdxcqxKgaIWDqVXIsdZV65aOzgJUv-ehCL2sqPVzI70ouiW0QljNH94Xc1X6wlQgAkH2o88i0YsT1hMmcjOe02FjCUT8jK6apodpSxJsnQUfU7J2u6t9o6s7Dao1g7KV7gnC6d9qP1wc1sydbbxbfC11WTdBaM0krnDsD0S5Sry5l28cdb4cCCP1piusd-2PV5HF0btG7z52-No8zT_mL3Ey_fnxWy6jDWAaOMKKp2iBiVEqRiiAQ5ClSVQzis0CfKsFJJXGqkUKNMsATC5UFxhRRkYPo7uT3_r4L86bNpi57vg-soCZAKScsrS3gUnlw6-aQKaog72oMKxYLQYOBa_HIuBY_HHsQ_dnUIWEf8DeZZmwDn_AWyBb-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703016</pqid></control><display><type>article</type><title>A Silicon Migration Model Incorporating Anisotropic Surface Energy and Non-Uniform Diffusivity</title><source>IEEE Electronic Library (IEL)</source><creator>Wong, Han Xuan ; Lee, Joshua En-Yuan</creator><creatorcontrib>Wong, Han Xuan ; Lee, Joshua En-Yuan</creatorcontrib><description>Silicon migration is a process that can produce seamless, single-crystal silicon cavities in a single mask layer, greatly simplifying process flows for forming various cavity- and channel-based structures. However, controlling the dimensions of the final cavity and membrane thickness is complex and difficult to predict. To address this challenge, we present an efficient and accurate method of simulating silicon migration, which advances the state of art in three ways. First, it accounts for anisotropic surface energy. Second, it uniquely models selective migration. Third, the method is implemented in Python, an open source and highly pervasive programming language. We validate the model using experimental results from the literature, and we show that incorporating anisotropy is critical for simulating high aspect ratio, high density etch hole arrays. We also find indications in the simulations of selective migration that anisotropy may be less significant for very large curvature (radius less than 100 nm) features. Lastly, we use this new model to predict the relationship between layout and annealing time for a given set of final objective cavity and membrane dimensions. [2022-0128]</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2022.3200007</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Annealing ; cavities ; Chemicals ; High aspect ratio ; Holes ; level-set method ; Mathematical models ; Membranes ; Programming languages ; Silicon ; Silicon migration ; silicon-on-nothing ; Simulation ; Single crystals ; Smoothing methods ; Surface energy ; Surface treatment</subject><ispartof>Journal of microelectromechanical systems, 2022-12, Vol.31 (6), p.943-950</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-d2dc6ec2a55ba1eef2325abb2033def4e38b573dce075e768422f95a3aed012f3</citedby><cites>FETCH-LOGICAL-c225t-d2dc6ec2a55ba1eef2325abb2033def4e38b573dce075e768422f95a3aed012f3</cites><orcidid>0000-0002-1741-1485 ; 0000-0003-2065-8435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9868233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9868233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wong, Han Xuan</creatorcontrib><creatorcontrib>Lee, Joshua En-Yuan</creatorcontrib><title>A Silicon Migration Model Incorporating Anisotropic Surface Energy and Non-Uniform Diffusivity</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Silicon migration is a process that can produce seamless, single-crystal silicon cavities in a single mask layer, greatly simplifying process flows for forming various cavity- and channel-based structures. However, controlling the dimensions of the final cavity and membrane thickness is complex and difficult to predict. To address this challenge, we present an efficient and accurate method of simulating silicon migration, which advances the state of art in three ways. First, it accounts for anisotropic surface energy. Second, it uniquely models selective migration. Third, the method is implemented in Python, an open source and highly pervasive programming language. We validate the model using experimental results from the literature, and we show that incorporating anisotropy is critical for simulating high aspect ratio, high density etch hole arrays. We also find indications in the simulations of selective migration that anisotropy may be less significant for very large curvature (radius less than 100 nm) features. Lastly, we use this new model to predict the relationship between layout and annealing time for a given set of final objective cavity and membrane dimensions. [2022-0128]</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Annealing</subject><subject>cavities</subject><subject>Chemicals</subject><subject>High aspect ratio</subject><subject>Holes</subject><subject>level-set method</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Programming languages</subject><subject>Silicon</subject><subject>Silicon migration</subject><subject>silicon-on-nothing</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Smoothing methods</subject><subject>Surface energy</subject><subject>Surface treatment</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRCMEEqXwA3CxxDnFXsdxcqxKgaIWDqVXIsdZV65aOzgJUv-ehCL2sqPVzI70ouiW0QljNH94Xc1X6wlQgAkH2o88i0YsT1hMmcjOe02FjCUT8jK6apodpSxJsnQUfU7J2u6t9o6s7Dao1g7KV7gnC6d9qP1wc1sydbbxbfC11WTdBaM0krnDsD0S5Sry5l28cdb4cCCP1piusd-2PV5HF0btG7z52-No8zT_mL3Ey_fnxWy6jDWAaOMKKp2iBiVEqRiiAQ5ClSVQzis0CfKsFJJXGqkUKNMsATC5UFxhRRkYPo7uT3_r4L86bNpi57vg-soCZAKScsrS3gUnlw6-aQKaog72oMKxYLQYOBa_HIuBY_HHsQ_dnUIWEf8DeZZmwDn_AWyBb-0</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wong, Han Xuan</creator><creator>Lee, Joshua En-Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1741-1485</orcidid><orcidid>https://orcid.org/0000-0003-2065-8435</orcidid></search><sort><creationdate>20221201</creationdate><title>A Silicon Migration Model Incorporating Anisotropic Surface Energy and Non-Uniform Diffusivity</title><author>Wong, Han Xuan ; Lee, Joshua En-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-d2dc6ec2a55ba1eef2325abb2033def4e38b573dce075e768422f95a3aed012f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Annealing</topic><topic>cavities</topic><topic>Chemicals</topic><topic>High aspect ratio</topic><topic>Holes</topic><topic>level-set method</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Programming languages</topic><topic>Silicon</topic><topic>Silicon migration</topic><topic>silicon-on-nothing</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Smoothing methods</topic><topic>Surface energy</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Han Xuan</creatorcontrib><creatorcontrib>Lee, Joshua En-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wong, Han Xuan</au><au>Lee, Joshua En-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Silicon Migration Model Incorporating Anisotropic Surface Energy and Non-Uniform Diffusivity</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>31</volume><issue>6</issue><spage>943</spage><epage>950</epage><pages>943-950</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Silicon migration is a process that can produce seamless, single-crystal silicon cavities in a single mask layer, greatly simplifying process flows for forming various cavity- and channel-based structures. However, controlling the dimensions of the final cavity and membrane thickness is complex and difficult to predict. To address this challenge, we present an efficient and accurate method of simulating silicon migration, which advances the state of art in three ways. First, it accounts for anisotropic surface energy. Second, it uniquely models selective migration. Third, the method is implemented in Python, an open source and highly pervasive programming language. We validate the model using experimental results from the literature, and we show that incorporating anisotropy is critical for simulating high aspect ratio, high density etch hole arrays. We also find indications in the simulations of selective migration that anisotropy may be less significant for very large curvature (radius less than 100 nm) features. Lastly, we use this new model to predict the relationship between layout and annealing time for a given set of final objective cavity and membrane dimensions. [2022-0128]</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2022.3200007</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1741-1485</orcidid><orcidid>https://orcid.org/0000-0003-2065-8435</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2022-12, Vol.31 (6), p.943-950 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2022_3200007 |
source | IEEE Electronic Library (IEL) |
subjects | Anisotropic magnetoresistance Anisotropy Annealing cavities Chemicals High aspect ratio Holes level-set method Mathematical models Membranes Programming languages Silicon Silicon migration silicon-on-nothing Simulation Single crystals Smoothing methods Surface energy Surface treatment |
title | A Silicon Migration Model Incorporating Anisotropic Surface Energy and Non-Uniform Diffusivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Silicon%20Migration%20Model%20Incorporating%20Anisotropic%20Surface%20Energy%20and%20Non-Uniform%20Diffusivity&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Wong,%20Han%20Xuan&rft.date=2022-12-01&rft.volume=31&rft.issue=6&rft.spage=943&rft.epage=950&rft.pages=943-950&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2022.3200007&rft_dat=%3Cproquest_RIE%3E2742703016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742703016&rft_id=info:pmid/&rft_ieee_id=9868233&rfr_iscdi=true |