An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy

This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2020-12, Vol.29 (6), p.1518-1522
Hauptverfasser: Yang, Yuechen, Radhakrishna, Ujwal, Hunter, James F., Eagar, Thomas W., Lang, Jeffrey H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1522
container_issue 6
container_start_page 1518
container_title Journal of microelectromechanical systems
container_volume 29
creator Yang, Yuechen
Radhakrishna, Ujwal
Hunter, James F.
Eagar, Thomas W.
Lang, Jeffrey H.
description This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power P_{Out} of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a P_{Out} of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]
doi_str_mv 10.1109/JMEMS.2020.3026057
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2020_3026057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9212382</ieee_id><sourcerecordid>2467298219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfem6RN8zhGdcqmgpuvIU3T0dG1M-mEfXu7P_h0D5dzDocfIfcII0RQT2_zbP41YsBgxIElEMsLMkAlMAKM08te969IYiyvyU0IawAUIk0GZDluaFY72_l2Y1aN6ypLF940oTZd1Tampt9V7o-aZo3zqz2dGv_rQuc8fTa5r6zpXEGrhs4_efxOx3Xd7m_JVWnq4O7Od0iWz9liMo1mHy-vk_EssjzBLuI2T3nJXZyowiEI4YTI0RnBAERqClNKK3PkeSEhURK5ykFZACZ4zkRa8iF5PPVuffuz60fpdbvz_eqgmUgkUylD1bvYyWV9G4J3pd76amP8XiPoAz59xKcP-PQZXx96OIUq59x_QDFkPGX8D7QuasA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298219</pqid></control><display><type>article</type><title>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yuechen ; Radhakrishna, Ujwal ; Hunter, James F. ; Eagar, Thomas W. ; Lang, Jeffrey H.</creator><creatorcontrib>Yang, Yuechen ; Radhakrishna, Ujwal ; Hunter, James F. ; Eagar, Thomas W. ; Lang, Jeffrey H.</creatorcontrib><description><![CDATA[This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2020.3026057</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Electromagnetics ; Energy harvesting ; Fabrication ; four-bar linkage ; Internet of Things ; IoT ; kinetic energy harvesting ; Load matching ; Machining ; MEMS ; metal alloy ; Nickel alloys ; Nickel base alloys ; Ruggedness ; Vibration ; Vibration energy harvesting ; Vibrations ; Water discharge</subject><ispartof>Journal of microelectromechanical systems, 2020-12, Vol.29 (6), p.1518-1522</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</citedby><cites>FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</cites><orcidid>0000-0002-2155-733X ; 0000-0001-8097-9199 ; 0000-0002-5765-4369 ; 0000-0002-2314-5187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9212382$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9212382$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yuechen</creatorcontrib><creatorcontrib>Radhakrishna, Ujwal</creatorcontrib><creatorcontrib>Hunter, James F.</creatorcontrib><creatorcontrib>Eagar, Thomas W.</creatorcontrib><creatorcontrib>Lang, Jeffrey H.</creatorcontrib><title>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]]]></description><subject>Design optimization</subject><subject>Electromagnetics</subject><subject>Energy harvesting</subject><subject>Fabrication</subject><subject>four-bar linkage</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>kinetic energy harvesting</subject><subject>Load matching</subject><subject>Machining</subject><subject>MEMS</subject><subject>metal alloy</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Ruggedness</subject><subject>Vibration</subject><subject>Vibration energy harvesting</subject><subject>Vibrations</subject><subject>Water discharge</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfem6RN8zhGdcqmgpuvIU3T0dG1M-mEfXu7P_h0D5dzDocfIfcII0RQT2_zbP41YsBgxIElEMsLMkAlMAKM08te969IYiyvyU0IawAUIk0GZDluaFY72_l2Y1aN6ypLF940oTZd1Tampt9V7o-aZo3zqz2dGv_rQuc8fTa5r6zpXEGrhs4_efxOx3Xd7m_JVWnq4O7Od0iWz9liMo1mHy-vk_EssjzBLuI2T3nJXZyowiEI4YTI0RnBAERqClNKK3PkeSEhURK5ykFZACZ4zkRa8iF5PPVuffuz60fpdbvz_eqgmUgkUylD1bvYyWV9G4J3pd76amP8XiPoAz59xKcP-PQZXx96OIUq59x_QDFkPGX8D7QuasA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Yang, Yuechen</creator><creator>Radhakrishna, Ujwal</creator><creator>Hunter, James F.</creator><creator>Eagar, Thomas W.</creator><creator>Lang, Jeffrey H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2155-733X</orcidid><orcidid>https://orcid.org/0000-0001-8097-9199</orcidid><orcidid>https://orcid.org/0000-0002-5765-4369</orcidid><orcidid>https://orcid.org/0000-0002-2314-5187</orcidid></search><sort><creationdate>20201201</creationdate><title>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</title><author>Yang, Yuechen ; Radhakrishna, Ujwal ; Hunter, James F. ; Eagar, Thomas W. ; Lang, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Design optimization</topic><topic>Electromagnetics</topic><topic>Energy harvesting</topic><topic>Fabrication</topic><topic>four-bar linkage</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>kinetic energy harvesting</topic><topic>Load matching</topic><topic>Machining</topic><topic>MEMS</topic><topic>metal alloy</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Ruggedness</topic><topic>Vibration</topic><topic>Vibration energy harvesting</topic><topic>Vibrations</topic><topic>Water discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuechen</creatorcontrib><creatorcontrib>Radhakrishna, Ujwal</creatorcontrib><creatorcontrib>Hunter, James F.</creatorcontrib><creatorcontrib>Eagar, Thomas W.</creatorcontrib><creatorcontrib>Lang, Jeffrey H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yuechen</au><au>Radhakrishna, Ujwal</au><au>Hunter, James F.</au><au>Eagar, Thomas W.</au><au>Lang, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>29</volume><issue>6</issue><spage>1518</spage><epage>1522</epage><pages>1518-1522</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2020.3026057</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2155-733X</orcidid><orcidid>https://orcid.org/0000-0001-8097-9199</orcidid><orcidid>https://orcid.org/0000-0002-5765-4369</orcidid><orcidid>https://orcid.org/0000-0002-2314-5187</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2020-12, Vol.29 (6), p.1518-1522
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2020_3026057
source IEEE Electronic Library (IEL)
subjects Design optimization
Electromagnetics
Energy harvesting
Fabrication
four-bar linkage
Internet of Things
IoT
kinetic energy harvesting
Load matching
Machining
MEMS
metal alloy
Nickel alloys
Nickel base alloys
Ruggedness
Vibration
Vibration energy harvesting
Vibrations
Water discharge
title An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electromagnetic%20Translational%20Vibration%20Energy%20Harvester%20Fabricated%20in%20MP35N%20Alloy&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Yang,%20Yuechen&rft.date=2020-12-01&rft.volume=29&rft.issue=6&rft.spage=1518&rft.epage=1522&rft.pages=1518-1522&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2020.3026057&rft_dat=%3Cproquest_RIE%3E2467298219%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467298219&rft_id=info:pmid/&rft_ieee_id=9212382&rfr_iscdi=true