An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy
This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now prov...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2020-12, Vol.29 (6), p.1518-1522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1522 |
---|---|
container_issue | 6 |
container_start_page | 1518 |
container_title | Journal of microelectromechanical systems |
container_volume | 29 |
creator | Yang, Yuechen Radhakrishna, Ujwal Hunter, James F. Eagar, Thomas W. Lang, Jeffrey H. |
description | This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power P_{Out} of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a P_{Out} of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261] |
doi_str_mv | 10.1109/JMEMS.2020.3026057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2020_3026057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9212382</ieee_id><sourcerecordid>2467298219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfem6RN8zhGdcqmgpuvIU3T0dG1M-mEfXu7P_h0D5dzDocfIfcII0RQT2_zbP41YsBgxIElEMsLMkAlMAKM08te969IYiyvyU0IawAUIk0GZDluaFY72_l2Y1aN6ypLF940oTZd1Tampt9V7o-aZo3zqz2dGv_rQuc8fTa5r6zpXEGrhs4_efxOx3Xd7m_JVWnq4O7Od0iWz9liMo1mHy-vk_EssjzBLuI2T3nJXZyowiEI4YTI0RnBAERqClNKK3PkeSEhURK5ykFZACZ4zkRa8iF5PPVuffuz60fpdbvz_eqgmUgkUylD1bvYyWV9G4J3pd76amP8XiPoAz59xKcP-PQZXx96OIUq59x_QDFkPGX8D7QuasA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298219</pqid></control><display><type>article</type><title>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yuechen ; Radhakrishna, Ujwal ; Hunter, James F. ; Eagar, Thomas W. ; Lang, Jeffrey H.</creator><creatorcontrib>Yang, Yuechen ; Radhakrishna, Ujwal ; Hunter, James F. ; Eagar, Thomas W. ; Lang, Jeffrey H.</creatorcontrib><description><![CDATA[This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2020.3026057</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Electromagnetics ; Energy harvesting ; Fabrication ; four-bar linkage ; Internet of Things ; IoT ; kinetic energy harvesting ; Load matching ; Machining ; MEMS ; metal alloy ; Nickel alloys ; Nickel base alloys ; Ruggedness ; Vibration ; Vibration energy harvesting ; Vibrations ; Water discharge</subject><ispartof>Journal of microelectromechanical systems, 2020-12, Vol.29 (6), p.1518-1522</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</citedby><cites>FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</cites><orcidid>0000-0002-2155-733X ; 0000-0001-8097-9199 ; 0000-0002-5765-4369 ; 0000-0002-2314-5187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9212382$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9212382$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yuechen</creatorcontrib><creatorcontrib>Radhakrishna, Ujwal</creatorcontrib><creatorcontrib>Hunter, James F.</creatorcontrib><creatorcontrib>Eagar, Thomas W.</creatorcontrib><creatorcontrib>Lang, Jeffrey H.</creatorcontrib><title>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]]]></description><subject>Design optimization</subject><subject>Electromagnetics</subject><subject>Energy harvesting</subject><subject>Fabrication</subject><subject>four-bar linkage</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>kinetic energy harvesting</subject><subject>Load matching</subject><subject>Machining</subject><subject>MEMS</subject><subject>metal alloy</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Ruggedness</subject><subject>Vibration</subject><subject>Vibration energy harvesting</subject><subject>Vibrations</subject><subject>Water discharge</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKdfQF8CPnfem6RN8zhGdcqmgpuvIU3T0dG1M-mEfXu7P_h0D5dzDocfIfcII0RQT2_zbP41YsBgxIElEMsLMkAlMAKM08te969IYiyvyU0IawAUIk0GZDluaFY72_l2Y1aN6ypLF940oTZd1Tampt9V7o-aZo3zqz2dGv_rQuc8fTa5r6zpXEGrhs4_efxOx3Xd7m_JVWnq4O7Od0iWz9liMo1mHy-vk_EssjzBLuI2T3nJXZyowiEI4YTI0RnBAERqClNKK3PkeSEhURK5ykFZACZ4zkRa8iF5PPVuffuz60fpdbvz_eqgmUgkUylD1bvYyWV9G4J3pd76amP8XiPoAz59xKcP-PQZXx96OIUq59x_QDFkPGX8D7QuasA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Yang, Yuechen</creator><creator>Radhakrishna, Ujwal</creator><creator>Hunter, James F.</creator><creator>Eagar, Thomas W.</creator><creator>Lang, Jeffrey H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2155-733X</orcidid><orcidid>https://orcid.org/0000-0001-8097-9199</orcidid><orcidid>https://orcid.org/0000-0002-5765-4369</orcidid><orcidid>https://orcid.org/0000-0002-2314-5187</orcidid></search><sort><creationdate>20201201</creationdate><title>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</title><author>Yang, Yuechen ; Radhakrishna, Ujwal ; Hunter, James F. ; Eagar, Thomas W. ; Lang, Jeffrey H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3cb83f3e569de1044e44b1ea420048adaf7c7b13bd70697139b09c00243b248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Design optimization</topic><topic>Electromagnetics</topic><topic>Energy harvesting</topic><topic>Fabrication</topic><topic>four-bar linkage</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>kinetic energy harvesting</topic><topic>Load matching</topic><topic>Machining</topic><topic>MEMS</topic><topic>metal alloy</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Ruggedness</topic><topic>Vibration</topic><topic>Vibration energy harvesting</topic><topic>Vibrations</topic><topic>Water discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuechen</creatorcontrib><creatorcontrib>Radhakrishna, Ujwal</creatorcontrib><creatorcontrib>Hunter, James F.</creatorcontrib><creatorcontrib>Eagar, Thomas W.</creatorcontrib><creatorcontrib>Lang, Jeffrey H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yuechen</au><au>Radhakrishna, Ujwal</au><au>Hunter, James F.</au><au>Eagar, Thomas W.</au><au>Lang, Jeffrey H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>29</volume><issue>6</issue><spage>1518</spage><epage>1522</epage><pages>1518-1522</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[This paper presents a mechanically-robust high-power-density electromagnetic vibration energy harvester fabricated from MP35N alloy. Its primary focus is on the use of MP35N alloy, and the corresponding performance. It follows our prior work on a similar harvester fabricated in silicon that now provides a performance baseline. The optimized design flow developed in our prior work is applied here, yielding mechanical, electrical, and magnetic design decisions, and harvesting performance, that remain largely unchanged. Importantly, while supporting comparable harvesting performance, the new material significantly improves robustness and ruggedness as needed for practical applications. The MP35N harvester suspension is fabricated using a combination of water-jet and electrical-discharge machining. The resulting harvester has an active volume of 1.81 cm 3 , and an output power <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 1.26 mW at 1.08 g and 107.7 Hz under matched load. This yields a power density (PD) of 0.7 mW/cm 3 and a normalized power density (NPD) of 0.6 mW/cm 3 /g 2 . Importantly, the new harvester survives a 6-foot drop, and ordinary handling during fabrication and operation. The addition of backiron is shown to reduce magnetic-path reluctance, increase magnetic coupling, and thus increase output power. The harvester with backiron has an active volume of 2.17 cm 3 , and a <inline-formula> <tex-math notation="LaTeX">P_{Out} </tex-math></inline-formula> of 2.2 mW at 1.3 g under matched load, yielding a PD of 1.01 mW/cm 3 and an NPD of 0.6 mW/cm 3 /g 2 . [2020-0261]]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2020.3026057</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2155-733X</orcidid><orcidid>https://orcid.org/0000-0001-8097-9199</orcidid><orcidid>https://orcid.org/0000-0002-5765-4369</orcidid><orcidid>https://orcid.org/0000-0002-2314-5187</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2020-12, Vol.29 (6), p.1518-1522 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2020_3026057 |
source | IEEE Electronic Library (IEL) |
subjects | Design optimization Electromagnetics Energy harvesting Fabrication four-bar linkage Internet of Things IoT kinetic energy harvesting Load matching Machining MEMS metal alloy Nickel alloys Nickel base alloys Ruggedness Vibration Vibration energy harvesting Vibrations Water discharge |
title | An Electromagnetic Translational Vibration Energy Harvester Fabricated in MP35N Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electromagnetic%20Translational%20Vibration%20Energy%20Harvester%20Fabricated%20in%20MP35N%20Alloy&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Yang,%20Yuechen&rft.date=2020-12-01&rft.volume=29&rft.issue=6&rft.spage=1518&rft.epage=1522&rft.pages=1518-1522&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2020.3026057&rft_dat=%3Cproquest_RIE%3E2467298219%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467298219&rft_id=info:pmid/&rft_ieee_id=9212382&rfr_iscdi=true |