Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators
We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomec...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2020-10, Vol.29 (5), p.677-684 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 5 |
container_start_page | 677 |
container_title | Journal of microelectromechanical systems |
container_volume | 29 |
creator | Miller, James M. L. Zhu, Haoshen Sundaram, Subramanian Vukasin, Gabrielle D. Chen, Yunhan Flader, Ian B. Shin, Dongsuk D. Kenny, Thomas W. |
description | We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205] |
doi_str_mv | 10.1109/JMEMS.2020.3022050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2020_3022050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9199105</ieee_id><sourcerecordid>2449308642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDph7NhNvERVeakFRMvactwJdZXExU6R4OtxacVqZnHPzNUh5JJCRinIm6fZZDbPGDDIcmAMBByRAZWcpkBFeRx3EEVaUFGckrMQ1gCU83I0IM9T29o-JL1LFiv0rW7SV4s_zmOwobdfmIyda2z3kdgumdvGGtclM2u8a9GsdGeNbpI3DK7TvfPhnJzUugl4cZhD8n43WYwf0unL_eP4dpqaPJd9KrleyrrmAJVgoqqEqRAZo1hQKU1JqWQGQORgBMeiLqnRuhAjqCuotBHLfEiu93c33n1uMfRq7ba-iy8V41zmUI44iym2T8W6IXis1cbbVvtvRUHtvKk_b2rnTR28RehqD1lE_AdkLBYd5r-Y42n-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308642</pqid></control><display><type>article</type><title>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, James M. L. ; Zhu, Haoshen ; Sundaram, Subramanian ; Vukasin, Gabrielle D. ; Chen, Yunhan ; Flader, Ian B. ; Shin, Dongsuk D. ; Kenny, Thomas W.</creator><creatorcontrib>Miller, James M. L. ; Zhu, Haoshen ; Sundaram, Subramanian ; Vukasin, Gabrielle D. ; Chen, Yunhan ; Flader, Ian B. ; Shin, Dongsuk D. ; Kenny, Thomas W.</creatorcontrib><description>We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2020.3022050</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Cooling ; Current measurement ; elastic modulus ; Frequency measurement ; MEMS ; microresonators ; Q factors ; Resonance ; Resonant frequency ; Resonators ; Semiconductor device measurement ; Silicon ; Temperature measurement ; thermal conductivity ; thermal-piezoresistive pumping</subject><ispartof>Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.677-684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</citedby><cites>FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</cites><orcidid>0000-0002-8053-4496 ; 0000-0002-4301-1880 ; 0000-0001-7972-4789 ; 0000-0002-8456-916X ; 0000-0001-7428-0971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9199105$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Miller, James M. L.</creatorcontrib><creatorcontrib>Zhu, Haoshen</creatorcontrib><creatorcontrib>Sundaram, Subramanian</creatorcontrib><creatorcontrib>Vukasin, Gabrielle D.</creatorcontrib><creatorcontrib>Chen, Yunhan</creatorcontrib><creatorcontrib>Flader, Ian B.</creatorcontrib><creatorcontrib>Shin, Dongsuk D.</creatorcontrib><creatorcontrib>Kenny, Thomas W.</creatorcontrib><title>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]</description><subject>Actuators</subject><subject>Cooling</subject><subject>Current measurement</subject><subject>elastic modulus</subject><subject>Frequency measurement</subject><subject>MEMS</subject><subject>microresonators</subject><subject>Q factors</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Semiconductor device measurement</subject><subject>Silicon</subject><subject>Temperature measurement</subject><subject>thermal conductivity</subject><subject>thermal-piezoresistive pumping</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDph7NhNvERVeakFRMvactwJdZXExU6R4OtxacVqZnHPzNUh5JJCRinIm6fZZDbPGDDIcmAMBByRAZWcpkBFeRx3EEVaUFGckrMQ1gCU83I0IM9T29o-JL1LFiv0rW7SV4s_zmOwobdfmIyda2z3kdgumdvGGtclM2u8a9GsdGeNbpI3DK7TvfPhnJzUugl4cZhD8n43WYwf0unL_eP4dpqaPJd9KrleyrrmAJVgoqqEqRAZo1hQKU1JqWQGQORgBMeiLqnRuhAjqCuotBHLfEiu93c33n1uMfRq7ba-iy8V41zmUI44iym2T8W6IXis1cbbVvtvRUHtvKk_b2rnTR28RehqD1lE_AdkLBYd5r-Y42n-</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Miller, James M. L.</creator><creator>Zhu, Haoshen</creator><creator>Sundaram, Subramanian</creator><creator>Vukasin, Gabrielle D.</creator><creator>Chen, Yunhan</creator><creator>Flader, Ian B.</creator><creator>Shin, Dongsuk D.</creator><creator>Kenny, Thomas W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8053-4496</orcidid><orcidid>https://orcid.org/0000-0002-4301-1880</orcidid><orcidid>https://orcid.org/0000-0001-7972-4789</orcidid><orcidid>https://orcid.org/0000-0002-8456-916X</orcidid><orcidid>https://orcid.org/0000-0001-7428-0971</orcidid></search><sort><creationdate>20201001</creationdate><title>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</title><author>Miller, James M. L. ; Zhu, Haoshen ; Sundaram, Subramanian ; Vukasin, Gabrielle D. ; Chen, Yunhan ; Flader, Ian B. ; Shin, Dongsuk D. ; Kenny, Thomas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Cooling</topic><topic>Current measurement</topic><topic>elastic modulus</topic><topic>Frequency measurement</topic><topic>MEMS</topic><topic>microresonators</topic><topic>Q factors</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Semiconductor device measurement</topic><topic>Silicon</topic><topic>Temperature measurement</topic><topic>thermal conductivity</topic><topic>thermal-piezoresistive pumping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, James M. L.</creatorcontrib><creatorcontrib>Zhu, Haoshen</creatorcontrib><creatorcontrib>Sundaram, Subramanian</creatorcontrib><creatorcontrib>Vukasin, Gabrielle D.</creatorcontrib><creatorcontrib>Chen, Yunhan</creatorcontrib><creatorcontrib>Flader, Ian B.</creatorcontrib><creatorcontrib>Shin, Dongsuk D.</creatorcontrib><creatorcontrib>Kenny, Thomas W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, James M. L.</au><au>Zhu, Haoshen</au><au>Sundaram, Subramanian</au><au>Vukasin, Gabrielle D.</au><au>Chen, Yunhan</au><au>Flader, Ian B.</au><au>Shin, Dongsuk D.</au><au>Kenny, Thomas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>29</volume><issue>5</issue><spage>677</spage><epage>684</epage><pages>677-684</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2020.3022050</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8053-4496</orcidid><orcidid>https://orcid.org/0000-0002-4301-1880</orcidid><orcidid>https://orcid.org/0000-0001-7972-4789</orcidid><orcidid>https://orcid.org/0000-0002-8456-916X</orcidid><orcidid>https://orcid.org/0000-0001-7428-0971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.677-684 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2020_3022050 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Cooling Current measurement elastic modulus Frequency measurement MEMS microresonators Q factors Resonance Resonant frequency Resonators Semiconductor device measurement Silicon Temperature measurement thermal conductivity thermal-piezoresistive pumping |
title | Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limits%20to%20Thermal-Piezoresistive%20Cooling%20in%20Silicon%20Micromechanical%20Resonators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Miller,%20James%20M.%20L.&rft.date=2020-10-01&rft.volume=29&rft.issue=5&rft.spage=677&rft.epage=684&rft.pages=677-684&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2020.3022050&rft_dat=%3Cproquest_cross%3E2449308642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308642&rft_id=info:pmid/&rft_ieee_id=9199105&rfr_iscdi=true |