Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators

We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2020-10, Vol.29 (5), p.677-684
Hauptverfasser: Miller, James M. L., Zhu, Haoshen, Sundaram, Subramanian, Vukasin, Gabrielle D., Chen, Yunhan, Flader, Ian B., Shin, Dongsuk D., Kenny, Thomas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 5
container_start_page 677
container_title Journal of microelectromechanical systems
container_volume 29
creator Miller, James M. L.
Zhu, Haoshen
Sundaram, Subramanian
Vukasin, Gabrielle D.
Chen, Yunhan
Flader, Ian B.
Shin, Dongsuk D.
Kenny, Thomas W.
description We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]
doi_str_mv 10.1109/JMEMS.2020.3022050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2020_3022050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9199105</ieee_id><sourcerecordid>2449308642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDph7NhNvERVeakFRMvactwJdZXExU6R4OtxacVqZnHPzNUh5JJCRinIm6fZZDbPGDDIcmAMBByRAZWcpkBFeRx3EEVaUFGckrMQ1gCU83I0IM9T29o-JL1LFiv0rW7SV4s_zmOwobdfmIyda2z3kdgumdvGGtclM2u8a9GsdGeNbpI3DK7TvfPhnJzUugl4cZhD8n43WYwf0unL_eP4dpqaPJd9KrleyrrmAJVgoqqEqRAZo1hQKU1JqWQGQORgBMeiLqnRuhAjqCuotBHLfEiu93c33n1uMfRq7ba-iy8V41zmUI44iym2T8W6IXis1cbbVvtvRUHtvKk_b2rnTR28RehqD1lE_AdkLBYd5r-Y42n-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308642</pqid></control><display><type>article</type><title>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, James M. L. ; Zhu, Haoshen ; Sundaram, Subramanian ; Vukasin, Gabrielle D. ; Chen, Yunhan ; Flader, Ian B. ; Shin, Dongsuk D. ; Kenny, Thomas W.</creator><creatorcontrib>Miller, James M. L. ; Zhu, Haoshen ; Sundaram, Subramanian ; Vukasin, Gabrielle D. ; Chen, Yunhan ; Flader, Ian B. ; Shin, Dongsuk D. ; Kenny, Thomas W.</creatorcontrib><description>We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2020.3022050</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Cooling ; Current measurement ; elastic modulus ; Frequency measurement ; MEMS ; microresonators ; Q factors ; Resonance ; Resonant frequency ; Resonators ; Semiconductor device measurement ; Silicon ; Temperature measurement ; thermal conductivity ; thermal-piezoresistive pumping</subject><ispartof>Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.677-684</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</citedby><cites>FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</cites><orcidid>0000-0002-8053-4496 ; 0000-0002-4301-1880 ; 0000-0001-7972-4789 ; 0000-0002-8456-916X ; 0000-0001-7428-0971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9199105$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Miller, James M. L.</creatorcontrib><creatorcontrib>Zhu, Haoshen</creatorcontrib><creatorcontrib>Sundaram, Subramanian</creatorcontrib><creatorcontrib>Vukasin, Gabrielle D.</creatorcontrib><creatorcontrib>Chen, Yunhan</creatorcontrib><creatorcontrib>Flader, Ian B.</creatorcontrib><creatorcontrib>Shin, Dongsuk D.</creatorcontrib><creatorcontrib>Kenny, Thomas W.</creatorcontrib><title>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]</description><subject>Actuators</subject><subject>Cooling</subject><subject>Current measurement</subject><subject>elastic modulus</subject><subject>Frequency measurement</subject><subject>MEMS</subject><subject>microresonators</subject><subject>Q factors</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Semiconductor device measurement</subject><subject>Silicon</subject><subject>Temperature measurement</subject><subject>thermal conductivity</subject><subject>thermal-piezoresistive pumping</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDph7NhNvERVeakFRMvactwJdZXExU6R4OtxacVqZnHPzNUh5JJCRinIm6fZZDbPGDDIcmAMBByRAZWcpkBFeRx3EEVaUFGckrMQ1gCU83I0IM9T29o-JL1LFiv0rW7SV4s_zmOwobdfmIyda2z3kdgumdvGGtclM2u8a9GsdGeNbpI3DK7TvfPhnJzUugl4cZhD8n43WYwf0unL_eP4dpqaPJd9KrleyrrmAJVgoqqEqRAZo1hQKU1JqWQGQORgBMeiLqnRuhAjqCuotBHLfEiu93c33n1uMfRq7ba-iy8V41zmUI44iym2T8W6IXis1cbbVvtvRUHtvKk_b2rnTR28RehqD1lE_AdkLBYd5r-Y42n-</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Miller, James M. L.</creator><creator>Zhu, Haoshen</creator><creator>Sundaram, Subramanian</creator><creator>Vukasin, Gabrielle D.</creator><creator>Chen, Yunhan</creator><creator>Flader, Ian B.</creator><creator>Shin, Dongsuk D.</creator><creator>Kenny, Thomas W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8053-4496</orcidid><orcidid>https://orcid.org/0000-0002-4301-1880</orcidid><orcidid>https://orcid.org/0000-0001-7972-4789</orcidid><orcidid>https://orcid.org/0000-0002-8456-916X</orcidid><orcidid>https://orcid.org/0000-0001-7428-0971</orcidid></search><sort><creationdate>20201001</creationdate><title>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</title><author>Miller, James M. L. ; Zhu, Haoshen ; Sundaram, Subramanian ; Vukasin, Gabrielle D. ; Chen, Yunhan ; Flader, Ian B. ; Shin, Dongsuk D. ; Kenny, Thomas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-94ad9ff400b525bb5cbee221e7199c81192c00530c54e7f81caa7560fb0bac5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Cooling</topic><topic>Current measurement</topic><topic>elastic modulus</topic><topic>Frequency measurement</topic><topic>MEMS</topic><topic>microresonators</topic><topic>Q factors</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Semiconductor device measurement</topic><topic>Silicon</topic><topic>Temperature measurement</topic><topic>thermal conductivity</topic><topic>thermal-piezoresistive pumping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, James M. L.</creatorcontrib><creatorcontrib>Zhu, Haoshen</creatorcontrib><creatorcontrib>Sundaram, Subramanian</creatorcontrib><creatorcontrib>Vukasin, Gabrielle D.</creatorcontrib><creatorcontrib>Chen, Yunhan</creatorcontrib><creatorcontrib>Flader, Ian B.</creatorcontrib><creatorcontrib>Shin, Dongsuk D.</creatorcontrib><creatorcontrib>Kenny, Thomas W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, James M. L.</au><au>Zhu, Haoshen</au><au>Sundaram, Subramanian</au><au>Vukasin, Gabrielle D.</au><au>Chen, Yunhan</au><au>Flader, Ian B.</au><au>Shin, Dongsuk D.</au><au>Kenny, Thomas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>29</volume><issue>5</issue><spage>677</spage><epage>684</epage><pages>677-684</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2020.3022050</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8053-4496</orcidid><orcidid>https://orcid.org/0000-0002-4301-1880</orcidid><orcidid>https://orcid.org/0000-0001-7972-4789</orcidid><orcidid>https://orcid.org/0000-0002-8456-916X</orcidid><orcidid>https://orcid.org/0000-0001-7428-0971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.677-684
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2020_3022050
source IEEE Electronic Library (IEL)
subjects Actuators
Cooling
Current measurement
elastic modulus
Frequency measurement
MEMS
microresonators
Q factors
Resonance
Resonant frequency
Resonators
Semiconductor device measurement
Silicon
Temperature measurement
thermal conductivity
thermal-piezoresistive pumping
title Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limits%20to%20Thermal-Piezoresistive%20Cooling%20in%20Silicon%20Micromechanical%20Resonators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Miller,%20James%20M.%20L.&rft.date=2020-10-01&rft.volume=29&rft.issue=5&rft.spage=677&rft.epage=684&rft.pages=677-684&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2020.3022050&rft_dat=%3Cproquest_cross%3E2449308642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308642&rft_id=info:pmid/&rft_ieee_id=9199105&rfr_iscdi=true