Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography

A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and graysca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2020-10, Vol.29 (5), p.734-740
Hauptverfasser: Garcia, Ines S., Ferreira, Carlos, Santos, Joana D., Martins, Marco, Dias, Rosana A., Aguiam, Diogo E., Cabral, Jorge, Gaspar, Joao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 5
container_start_page 734
container_title Journal of microelectromechanical systems
container_volume 29
creator Garcia, Ines S.
Ferreira, Carlos
Santos, Joana D.
Martins, Marco
Dias, Rosana A.
Aguiam, Diogo E.
Cabral, Jorge
Gaspar, Joao
description A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a 2.8~\mu \text{m} gap and asymmetric heights of the movable and the fixed electrodes of 20 \mu \text{m} and 50 \mu \text{m} , respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.
doi_str_mv 10.1109/JMEMS.2020.3006746
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2020_3006746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9138388</ieee_id><sourcerecordid>2449308979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</originalsourceid><addsrcrecordid>eNqNkctOwzAQRSMEEs8fgI0llqhl_IgdLyHiqVYsCmIZTYxDXdq42KlQ_x63QbBlY8_I54zl6yw7pTCkFPTl4_hmPBkyYDDkAFIJuZMdUC3oAGhe7KYacjVQNFf72WGMMwAqRCEPstkt1sEZ7JxviW8Iks0kMnYm-IULwQdyjdG-kXR8vZp_kImbO5OankAzda1r30npF7VrE_fquim5C7iOBueWjFLr3wMup-vjbK_BebQnP_tR9nJ781zeD0ZPdw_l1WhguBRdWqmuLReCU6owN6ZuuFaCW1bzBrk1yrJG1agtKwwIFAwBQUmr5RtjKPhRdt7PXQb_ubKxq2Z-Fdp0ZcWE0BwKrXSiWE-lZ8QYbFMtg1tgWFcUqk2m1TbTapNp9ZNpki566cvWvonG2dbYXxEghSyFlHmqqEp08X-6dN32E0q_aruknvWqs_ZP0ZQXvCj4N5SSk-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308979</pqid></control><display><type>article</type><title>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia, Ines S. ; Ferreira, Carlos ; Santos, Joana D. ; Martins, Marco ; Dias, Rosana A. ; Aguiam, Diogo E. ; Cabral, Jorge ; Gaspar, Joao</creator><creatorcontrib>Garcia, Ines S. ; Ferreira, Carlos ; Santos, Joana D. ; Martins, Marco ; Dias, Rosana A. ; Aguiam, Diogo E. ; Cabral, Jorge ; Gaspar, Joao</creatorcontrib><description><![CDATA[A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a <inline-formula> <tex-math notation="LaTeX">2.8~\mu \text{m} </tex-math></inline-formula> gap and asymmetric heights of the movable and the fixed electrodes of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2020.3006746</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Actuators ; Asymmetry ; Bulk-micromachining process ; Electrodes ; Engineering ; Engineering, Electrical &amp; Electronic ; Fabrication ; Field of view ; Gray scale ; grayscale ; Instruments &amp; Instrumentation ; Lithography ; Low pressure ; Mechanical systems ; MEMS mirror ; Microelectromechanical systems ; Micromachining ; Micromechanical devices ; Mirrors ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Resists ; scanner ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Self alignment ; Silicon ; Technology ; vertically asymmetric electrodes</subject><ispartof>Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.734-740</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576466500017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</citedby><cites>FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</cites><orcidid>0000-0001-9488-5003 ; 0000-0002-1531-1675 ; -- ; 0000-0001-6318-9021 ; 0000-0002-4605-6961 ; 0000-0001-9954-9746 ; 0000-0002-1142-3178 ; 0000-0002-6358-8951 ; 0000-0002-3877-0946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9138388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,28255,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9138388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia, Ines S.</creatorcontrib><creatorcontrib>Ferreira, Carlos</creatorcontrib><creatorcontrib>Santos, Joana D.</creatorcontrib><creatorcontrib>Martins, Marco</creatorcontrib><creatorcontrib>Dias, Rosana A.</creatorcontrib><creatorcontrib>Aguiam, Diogo E.</creatorcontrib><creatorcontrib>Cabral, Jorge</creatorcontrib><creatorcontrib>Gaspar, Joao</creatorcontrib><title>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><addtitle>J MICROELECTROMECH S</addtitle><description><![CDATA[A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a <inline-formula> <tex-math notation="LaTeX">2.8~\mu \text{m} </tex-math></inline-formula> gap and asymmetric heights of the movable and the fixed electrodes of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.]]></description><subject>Actuators</subject><subject>Asymmetry</subject><subject>Bulk-micromachining process</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Fabrication</subject><subject>Field of view</subject><subject>Gray scale</subject><subject>grayscale</subject><subject>Instruments &amp; Instrumentation</subject><subject>Lithography</subject><subject>Low pressure</subject><subject>Mechanical systems</subject><subject>MEMS mirror</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>Mirrors</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Resists</subject><subject>scanner</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Self alignment</subject><subject>Silicon</subject><subject>Technology</subject><subject>vertically asymmetric electrodes</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkctOwzAQRSMEEs8fgI0llqhl_IgdLyHiqVYsCmIZTYxDXdq42KlQ_x63QbBlY8_I54zl6yw7pTCkFPTl4_hmPBkyYDDkAFIJuZMdUC3oAGhe7KYacjVQNFf72WGMMwAqRCEPstkt1sEZ7JxviW8Iks0kMnYm-IULwQdyjdG-kXR8vZp_kImbO5OankAzda1r30npF7VrE_fquim5C7iOBueWjFLr3wMup-vjbK_BebQnP_tR9nJ781zeD0ZPdw_l1WhguBRdWqmuLReCU6owN6ZuuFaCW1bzBrk1yrJG1agtKwwIFAwBQUmr5RtjKPhRdt7PXQb_ubKxq2Z-Fdp0ZcWE0BwKrXSiWE-lZ8QYbFMtg1tgWFcUqk2m1TbTapNp9ZNpki566cvWvonG2dbYXxEghSyFlHmqqEp08X-6dN32E0q_aruknvWqs_ZP0ZQXvCj4N5SSk-Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Garcia, Ines S.</creator><creator>Ferreira, Carlos</creator><creator>Santos, Joana D.</creator><creator>Martins, Marco</creator><creator>Dias, Rosana A.</creator><creator>Aguiam, Diogo E.</creator><creator>Cabral, Jorge</creator><creator>Gaspar, Joao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9488-5003</orcidid><orcidid>https://orcid.org/0000-0002-1531-1675</orcidid><orcidid>https://orcid.org/--</orcidid><orcidid>https://orcid.org/0000-0001-6318-9021</orcidid><orcidid>https://orcid.org/0000-0002-4605-6961</orcidid><orcidid>https://orcid.org/0000-0001-9954-9746</orcidid><orcidid>https://orcid.org/0000-0002-1142-3178</orcidid><orcidid>https://orcid.org/0000-0002-6358-8951</orcidid><orcidid>https://orcid.org/0000-0002-3877-0946</orcidid></search><sort><creationdate>20201001</creationdate><title>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</title><author>Garcia, Ines S. ; Ferreira, Carlos ; Santos, Joana D. ; Martins, Marco ; Dias, Rosana A. ; Aguiam, Diogo E. ; Cabral, Jorge ; Gaspar, Joao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Asymmetry</topic><topic>Bulk-micromachining process</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Fabrication</topic><topic>Field of view</topic><topic>Gray scale</topic><topic>grayscale</topic><topic>Instruments &amp; Instrumentation</topic><topic>Lithography</topic><topic>Low pressure</topic><topic>Mechanical systems</topic><topic>MEMS mirror</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>Mirrors</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Resists</topic><topic>scanner</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Self alignment</topic><topic>Silicon</topic><topic>Technology</topic><topic>vertically asymmetric electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ines S.</creatorcontrib><creatorcontrib>Ferreira, Carlos</creatorcontrib><creatorcontrib>Santos, Joana D.</creatorcontrib><creatorcontrib>Martins, Marco</creatorcontrib><creatorcontrib>Dias, Rosana A.</creatorcontrib><creatorcontrib>Aguiam, Diogo E.</creatorcontrib><creatorcontrib>Cabral, Jorge</creatorcontrib><creatorcontrib>Gaspar, Joao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, Ines S.</au><au>Ferreira, Carlos</au><au>Santos, Joana D.</au><au>Martins, Marco</au><au>Dias, Rosana A.</au><au>Aguiam, Diogo E.</au><au>Cabral, Jorge</au><au>Gaspar, Joao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><stitle>J MICROELECTROMECH S</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>29</volume><issue>5</issue><spage>734</spage><epage>740</epage><pages>734-740</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a <inline-formula> <tex-math notation="LaTeX">2.8~\mu \text{m} </tex-math></inline-formula> gap and asymmetric heights of the movable and the fixed electrodes of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2020.3006746</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9488-5003</orcidid><orcidid>https://orcid.org/0000-0002-1531-1675</orcidid><orcidid>https://orcid.org/--</orcidid><orcidid>https://orcid.org/0000-0001-6318-9021</orcidid><orcidid>https://orcid.org/0000-0002-4605-6961</orcidid><orcidid>https://orcid.org/0000-0001-9954-9746</orcidid><orcidid>https://orcid.org/0000-0002-1142-3178</orcidid><orcidid>https://orcid.org/0000-0002-6358-8951</orcidid><orcidid>https://orcid.org/0000-0002-3877-0946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.734-740
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2020_3006746
source IEEE Electronic Library (IEL)
subjects Actuators
Asymmetry
Bulk-micromachining process
Electrodes
Engineering
Engineering, Electrical & Electronic
Fabrication
Field of view
Gray scale
grayscale
Instruments & Instrumentation
Lithography
Low pressure
Mechanical systems
MEMS mirror
Microelectromechanical systems
Micromachining
Micromechanical devices
Mirrors
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
Resists
scanner
Science & Technology
Science & Technology - Other Topics
Self alignment
Silicon
Technology
vertically asymmetric electrodes
title Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20MEMS%20Micromirror%20Based%20on%20Bulk%20Silicon%20Micromachining%20Combined%20With%20Grayscale%20Lithography&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Garcia,%20Ines%20S.&rft.date=2020-10-01&rft.volume=29&rft.issue=5&rft.spage=734&rft.epage=740&rft.pages=734-740&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2020.3006746&rft_dat=%3Cproquest_RIE%3E2449308979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308979&rft_id=info:pmid/&rft_ieee_id=9138388&rfr_iscdi=true