Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography
A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and graysca...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2020-10, Vol.29 (5), p.734-740 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 740 |
---|---|
container_issue | 5 |
container_start_page | 734 |
container_title | Journal of microelectromechanical systems |
container_volume | 29 |
creator | Garcia, Ines S. Ferreira, Carlos Santos, Joana D. Martins, Marco Dias, Rosana A. Aguiam, Diogo E. Cabral, Jorge Gaspar, Joao |
description | A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a 2.8~\mu \text{m} gap and asymmetric heights of the movable and the fixed electrodes of 20 \mu \text{m} and 50 \mu \text{m} , respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode. |
doi_str_mv | 10.1109/JMEMS.2020.3006746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2020_3006746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9138388</ieee_id><sourcerecordid>2449308979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</originalsourceid><addsrcrecordid>eNqNkctOwzAQRSMEEs8fgI0llqhl_IgdLyHiqVYsCmIZTYxDXdq42KlQ_x63QbBlY8_I54zl6yw7pTCkFPTl4_hmPBkyYDDkAFIJuZMdUC3oAGhe7KYacjVQNFf72WGMMwAqRCEPstkt1sEZ7JxviW8Iks0kMnYm-IULwQdyjdG-kXR8vZp_kImbO5OankAzda1r30npF7VrE_fquim5C7iOBueWjFLr3wMup-vjbK_BebQnP_tR9nJ781zeD0ZPdw_l1WhguBRdWqmuLReCU6owN6ZuuFaCW1bzBrk1yrJG1agtKwwIFAwBQUmr5RtjKPhRdt7PXQb_ubKxq2Z-Fdp0ZcWE0BwKrXSiWE-lZ8QYbFMtg1tgWFcUqk2m1TbTapNp9ZNpki566cvWvonG2dbYXxEghSyFlHmqqEp08X-6dN32E0q_aruknvWqs_ZP0ZQXvCj4N5SSk-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308979</pqid></control><display><type>article</type><title>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia, Ines S. ; Ferreira, Carlos ; Santos, Joana D. ; Martins, Marco ; Dias, Rosana A. ; Aguiam, Diogo E. ; Cabral, Jorge ; Gaspar, Joao</creator><creatorcontrib>Garcia, Ines S. ; Ferreira, Carlos ; Santos, Joana D. ; Martins, Marco ; Dias, Rosana A. ; Aguiam, Diogo E. ; Cabral, Jorge ; Gaspar, Joao</creatorcontrib><description><![CDATA[A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a <inline-formula> <tex-math notation="LaTeX">2.8~\mu \text{m} </tex-math></inline-formula> gap and asymmetric heights of the movable and the fixed electrodes of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2020.3006746</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Actuators ; Asymmetry ; Bulk-micromachining process ; Electrodes ; Engineering ; Engineering, Electrical & Electronic ; Fabrication ; Field of view ; Gray scale ; grayscale ; Instruments & Instrumentation ; Lithography ; Low pressure ; Mechanical systems ; MEMS mirror ; Microelectromechanical systems ; Micromachining ; Micromechanical devices ; Mirrors ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Resists ; scanner ; Science & Technology ; Science & Technology - Other Topics ; Self alignment ; Silicon ; Technology ; vertically asymmetric electrodes</subject><ispartof>Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.734-740</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576466500017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</citedby><cites>FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</cites><orcidid>0000-0001-9488-5003 ; 0000-0002-1531-1675 ; -- ; 0000-0001-6318-9021 ; 0000-0002-4605-6961 ; 0000-0001-9954-9746 ; 0000-0002-1142-3178 ; 0000-0002-6358-8951 ; 0000-0002-3877-0946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9138388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,28255,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9138388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia, Ines S.</creatorcontrib><creatorcontrib>Ferreira, Carlos</creatorcontrib><creatorcontrib>Santos, Joana D.</creatorcontrib><creatorcontrib>Martins, Marco</creatorcontrib><creatorcontrib>Dias, Rosana A.</creatorcontrib><creatorcontrib>Aguiam, Diogo E.</creatorcontrib><creatorcontrib>Cabral, Jorge</creatorcontrib><creatorcontrib>Gaspar, Joao</creatorcontrib><title>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><addtitle>J MICROELECTROMECH S</addtitle><description><![CDATA[A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a <inline-formula> <tex-math notation="LaTeX">2.8~\mu \text{m} </tex-math></inline-formula> gap and asymmetric heights of the movable and the fixed electrodes of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.]]></description><subject>Actuators</subject><subject>Asymmetry</subject><subject>Bulk-micromachining process</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Fabrication</subject><subject>Field of view</subject><subject>Gray scale</subject><subject>grayscale</subject><subject>Instruments & Instrumentation</subject><subject>Lithography</subject><subject>Low pressure</subject><subject>Mechanical systems</subject><subject>MEMS mirror</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>Mirrors</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Resists</subject><subject>scanner</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Self alignment</subject><subject>Silicon</subject><subject>Technology</subject><subject>vertically asymmetric electrodes</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkctOwzAQRSMEEs8fgI0llqhl_IgdLyHiqVYsCmIZTYxDXdq42KlQ_x63QbBlY8_I54zl6yw7pTCkFPTl4_hmPBkyYDDkAFIJuZMdUC3oAGhe7KYacjVQNFf72WGMMwAqRCEPstkt1sEZ7JxviW8Iks0kMnYm-IULwQdyjdG-kXR8vZp_kImbO5OankAzda1r30npF7VrE_fquim5C7iOBueWjFLr3wMup-vjbK_BebQnP_tR9nJ781zeD0ZPdw_l1WhguBRdWqmuLReCU6owN6ZuuFaCW1bzBrk1yrJG1agtKwwIFAwBQUmr5RtjKPhRdt7PXQb_ubKxq2Z-Fdp0ZcWE0BwKrXSiWE-lZ8QYbFMtg1tgWFcUqk2m1TbTapNp9ZNpki566cvWvonG2dbYXxEghSyFlHmqqEp08X-6dN32E0q_aruknvWqs_ZP0ZQXvCj4N5SSk-Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Garcia, Ines S.</creator><creator>Ferreira, Carlos</creator><creator>Santos, Joana D.</creator><creator>Martins, Marco</creator><creator>Dias, Rosana A.</creator><creator>Aguiam, Diogo E.</creator><creator>Cabral, Jorge</creator><creator>Gaspar, Joao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9488-5003</orcidid><orcidid>https://orcid.org/0000-0002-1531-1675</orcidid><orcidid>https://orcid.org/--</orcidid><orcidid>https://orcid.org/0000-0001-6318-9021</orcidid><orcidid>https://orcid.org/0000-0002-4605-6961</orcidid><orcidid>https://orcid.org/0000-0001-9954-9746</orcidid><orcidid>https://orcid.org/0000-0002-1142-3178</orcidid><orcidid>https://orcid.org/0000-0002-6358-8951</orcidid><orcidid>https://orcid.org/0000-0002-3877-0946</orcidid></search><sort><creationdate>20201001</creationdate><title>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</title><author>Garcia, Ines S. ; Ferreira, Carlos ; Santos, Joana D. ; Martins, Marco ; Dias, Rosana A. ; Aguiam, Diogo E. ; Cabral, Jorge ; Gaspar, Joao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c319be3443117a5ccbf39743e2b3fa3ec7e2f7ba9e28c04a42a0a076e96d22a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Asymmetry</topic><topic>Bulk-micromachining process</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Fabrication</topic><topic>Field of view</topic><topic>Gray scale</topic><topic>grayscale</topic><topic>Instruments & Instrumentation</topic><topic>Lithography</topic><topic>Low pressure</topic><topic>Mechanical systems</topic><topic>MEMS mirror</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>Mirrors</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Resists</topic><topic>scanner</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Self alignment</topic><topic>Silicon</topic><topic>Technology</topic><topic>vertically asymmetric electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ines S.</creatorcontrib><creatorcontrib>Ferreira, Carlos</creatorcontrib><creatorcontrib>Santos, Joana D.</creatorcontrib><creatorcontrib>Martins, Marco</creatorcontrib><creatorcontrib>Dias, Rosana A.</creatorcontrib><creatorcontrib>Aguiam, Diogo E.</creatorcontrib><creatorcontrib>Cabral, Jorge</creatorcontrib><creatorcontrib>Gaspar, Joao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, Ines S.</au><au>Ferreira, Carlos</au><au>Santos, Joana D.</au><au>Martins, Marco</au><au>Dias, Rosana A.</au><au>Aguiam, Diogo E.</au><au>Cabral, Jorge</au><au>Gaspar, Joao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><stitle>J MICROELECTROMECH S</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>29</volume><issue>5</issue><spage>734</spage><epage>740</epage><pages>734-740</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[A 1D MEMS (Micro-Electro-Mechanical Systems) mirror for LiDAR applications, based on vertically asymmetric comb-drive electrostatic actuators, is presented in this work employing a novel fabrication process. This novel micromachining process combines typical SOI-based bulk micromachining and grayscale lithography, enabling the fabrication of combs actuators with asymmetric heights using a single lithography step in the active layer. With this technique, the fabrication process is simplified, and the overall costs are reduced since the number of required lithography steps decrease. The fabricated mirrors present self-aligned electrodes with a <inline-formula> <tex-math notation="LaTeX">2.8~\mu \text{m} </tex-math></inline-formula> gap and asymmetric heights of the movable and the fixed electrodes of 20 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> and 50 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, respectively. These asymmetric actuators are an essential feature for the operation mode of this device, enabling both in resonant and static mode operation. A mirror field of view (FOV) of 54° at 838 Hz was achieved under low-pressure, when resonantly operated, and a FOV of 0.8° in the static mode.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2020.3006746</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9488-5003</orcidid><orcidid>https://orcid.org/0000-0002-1531-1675</orcidid><orcidid>https://orcid.org/--</orcidid><orcidid>https://orcid.org/0000-0001-6318-9021</orcidid><orcidid>https://orcid.org/0000-0002-4605-6961</orcidid><orcidid>https://orcid.org/0000-0001-9954-9746</orcidid><orcidid>https://orcid.org/0000-0002-1142-3178</orcidid><orcidid>https://orcid.org/0000-0002-6358-8951</orcidid><orcidid>https://orcid.org/0000-0002-3877-0946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2020-10, Vol.29 (5), p.734-740 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2020_3006746 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Asymmetry Bulk-micromachining process Electrodes Engineering Engineering, Electrical & Electronic Fabrication Field of view Gray scale grayscale Instruments & Instrumentation Lithography Low pressure Mechanical systems MEMS mirror Microelectromechanical systems Micromachining Micromechanical devices Mirrors Nanoscience & Nanotechnology Physical Sciences Physics Physics, Applied Resists scanner Science & Technology Science & Technology - Other Topics Self alignment Silicon Technology vertically asymmetric electrodes |
title | Fabrication of a MEMS Micromirror Based on Bulk Silicon Micromachining Combined With Grayscale Lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20MEMS%20Micromirror%20Based%20on%20Bulk%20Silicon%20Micromachining%20Combined%20With%20Grayscale%20Lithography&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Garcia,%20Ines%20S.&rft.date=2020-10-01&rft.volume=29&rft.issue=5&rft.spage=734&rft.epage=740&rft.pages=734-740&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2020.3006746&rft_dat=%3Cproquest_RIE%3E2449308979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449308979&rft_id=info:pmid/&rft_ieee_id=9138388&rfr_iscdi=true |