Miniaturized Diaphragm Vacuum Pump by Multi-Material Additive Manufacturing

This paper reports the first demonstration of a multi-material, fully additively manufactured, miniature diaphragm pump for creation and maintenance of low vacuum from atmospheric conditions. Using polyjet 3-D printing technology with 42 μm XY pixelation and 16 μm or 25 μm tall voxels, a single-stag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2017-12, Vol.26 (6), p.1316-1326
Hauptverfasser: Taylor, Anthony P., Velasquez-Garcia, Luis Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1326
container_issue 6
container_start_page 1316
container_title Journal of microelectromechanical systems
container_volume 26
creator Taylor, Anthony P.
Velasquez-Garcia, Luis Fernando
description This paper reports the first demonstration of a multi-material, fully additively manufactured, miniature diaphragm pump for creation and maintenance of low vacuum from atmospheric conditions. Using polyjet 3-D printing technology with 42 μm XY pixelation and 16 μm or 25 μm tall voxels, a single-stage vacuum pump design with active valves that has a total pumping volume of 1 cm 3 with 5% dead volume was implemented. Optimization of the devices resulted in manufacturing different constitutive parts of the pump in flexible materials of different stiffness. Finite element simulations of the pump design estimate at 0.20 MPa the maximum stress on the piston diaphragm root at full actuation, and at 106 Hz the natural frequency of the compression chamber. While operating at 1.82 Hz, the devices consistently pumped down from atmospheric pressure to 110 Torr in under 4 s, which is the smallest and fastest base pressure reported in the literature for a microfabricated diaphragm vacuum pump. In addition, the pumps can deliver mass flow rates as high as 200 sccm at 535 Torr, which is much higher than any of the reported flow rates from a diaphragm vacuum pump manufactured with standard microfabrication. The outgassing rate of the TangoBlack Plus® photopolymer used to print the pumps was measured and is on par with vacuum compatible elastomers. Compression chamber diaphragms exhibited lifetimes approaching 1 millioncycles, while the valves membranes have not leaked after over 2 million cycles.
doi_str_mv 10.1109/JMEMS.2017.2743020
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2017_2743020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8026556</ieee_id><sourcerecordid>10_1109_JMEMS_2017_2743020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-9bdf9266c76d726d8e0138b22cf57d98d8ba0b0dc42cd74967af454ce6bbede3</originalsourceid><addsrcrecordid>eNo90MtKw0AUxvFBFKzVF9DNvEDqmcncsiy11kuDgsVtmFvqSBLDJBHq09vY4uqczf9b_BC6JjAjBLLbp3yZv80oEDmjkqVA4QRNSMZIAoSr0_0PXCaScHmOLrruE4AwpsQEPeehCbofYvjxDt8F3X5Eva3xu7bDUOPXoW6x2eF8qPqQ5Lr3MegKz50Lffj2ONfNUGo79s32Ep2Vuur81fFO0eZ-uVk8JOuX1eNivk4sFbJPMuPKjAphpXCSCqc8kFQZSm3JpcuUU0aDAWcZtU6yTEhdMs6sF8Z459MpoodZG7-6LvqyaGOoddwVBIpRo_jTKEaN4qixj24OUfDe_wcKqOBcpL_OGF03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Miniaturized Diaphragm Vacuum Pump by Multi-Material Additive Manufacturing</title><source>IEEE Electronic Library (IEL)</source><creator>Taylor, Anthony P. ; Velasquez-Garcia, Luis Fernando</creator><creatorcontrib>Taylor, Anthony P. ; Velasquez-Garcia, Luis Fernando</creatorcontrib><description>This paper reports the first demonstration of a multi-material, fully additively manufactured, miniature diaphragm pump for creation and maintenance of low vacuum from atmospheric conditions. Using polyjet 3-D printing technology with 42 μm XY pixelation and 16 μm or 25 μm tall voxels, a single-stage vacuum pump design with active valves that has a total pumping volume of 1 cm 3 with 5% dead volume was implemented. Optimization of the devices resulted in manufacturing different constitutive parts of the pump in flexible materials of different stiffness. Finite element simulations of the pump design estimate at 0.20 MPa the maximum stress on the piston diaphragm root at full actuation, and at 106 Hz the natural frequency of the compression chamber. While operating at 1.82 Hz, the devices consistently pumped down from atmospheric pressure to 110 Torr in under 4 s, which is the smallest and fastest base pressure reported in the literature for a microfabricated diaphragm vacuum pump. In addition, the pumps can deliver mass flow rates as high as 200 sccm at 535 Torr, which is much higher than any of the reported flow rates from a diaphragm vacuum pump manufactured with standard microfabrication. The outgassing rate of the TangoBlack Plus® photopolymer used to print the pumps was measured and is on par with vacuum compatible elastomers. Compression chamber diaphragms exhibited lifetimes approaching 1 millioncycles, while the valves membranes have not leaked after over 2 million cycles.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2017.2743020</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D printing of microsystems ; diaphragm pump ; miniature vacuum pump ; Optical surface waves ; polyjet printing ; Rough surfaces ; Surface roughness ; Surface topography ; Three-dimensional printing ; vacuum microelectro-mechanical systems (MEMS) ; Vacuum technology ; Young's modulus</subject><ispartof>Journal of microelectromechanical systems, 2017-12, Vol.26 (6), p.1316-1326</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-9bdf9266c76d726d8e0138b22cf57d98d8ba0b0dc42cd74967af454ce6bbede3</citedby><cites>FETCH-LOGICAL-c267t-9bdf9266c76d726d8e0138b22cf57d98d8ba0b0dc42cd74967af454ce6bbede3</cites><orcidid>0000-0002-9232-1244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8026556$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Taylor, Anthony P.</creatorcontrib><creatorcontrib>Velasquez-Garcia, Luis Fernando</creatorcontrib><title>Miniaturized Diaphragm Vacuum Pump by Multi-Material Additive Manufacturing</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>This paper reports the first demonstration of a multi-material, fully additively manufactured, miniature diaphragm pump for creation and maintenance of low vacuum from atmospheric conditions. Using polyjet 3-D printing technology with 42 μm XY pixelation and 16 μm or 25 μm tall voxels, a single-stage vacuum pump design with active valves that has a total pumping volume of 1 cm 3 with 5% dead volume was implemented. Optimization of the devices resulted in manufacturing different constitutive parts of the pump in flexible materials of different stiffness. Finite element simulations of the pump design estimate at 0.20 MPa the maximum stress on the piston diaphragm root at full actuation, and at 106 Hz the natural frequency of the compression chamber. While operating at 1.82 Hz, the devices consistently pumped down from atmospheric pressure to 110 Torr in under 4 s, which is the smallest and fastest base pressure reported in the literature for a microfabricated diaphragm vacuum pump. In addition, the pumps can deliver mass flow rates as high as 200 sccm at 535 Torr, which is much higher than any of the reported flow rates from a diaphragm vacuum pump manufactured with standard microfabrication. The outgassing rate of the TangoBlack Plus® photopolymer used to print the pumps was measured and is on par with vacuum compatible elastomers. Compression chamber diaphragms exhibited lifetimes approaching 1 millioncycles, while the valves membranes have not leaked after over 2 million cycles.</description><subject>3-D printing of microsystems</subject><subject>diaphragm pump</subject><subject>miniature vacuum pump</subject><subject>Optical surface waves</subject><subject>polyjet printing</subject><subject>Rough surfaces</subject><subject>Surface roughness</subject><subject>Surface topography</subject><subject>Three-dimensional printing</subject><subject>vacuum microelectro-mechanical systems (MEMS)</subject><subject>Vacuum technology</subject><subject>Young's modulus</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo90MtKw0AUxvFBFKzVF9DNvEDqmcncsiy11kuDgsVtmFvqSBLDJBHq09vY4uqczf9b_BC6JjAjBLLbp3yZv80oEDmjkqVA4QRNSMZIAoSr0_0PXCaScHmOLrruE4AwpsQEPeehCbofYvjxDt8F3X5Eva3xu7bDUOPXoW6x2eF8qPqQ5Lr3MegKz50Lffj2ONfNUGo79s32Ep2Vuur81fFO0eZ-uVk8JOuX1eNivk4sFbJPMuPKjAphpXCSCqc8kFQZSm3JpcuUU0aDAWcZtU6yTEhdMs6sF8Z459MpoodZG7-6LvqyaGOoddwVBIpRo_jTKEaN4qixj24OUfDe_wcKqOBcpL_OGF03</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Taylor, Anthony P.</creator><creator>Velasquez-Garcia, Luis Fernando</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9232-1244</orcidid></search><sort><creationdate>201712</creationdate><title>Miniaturized Diaphragm Vacuum Pump by Multi-Material Additive Manufacturing</title><author>Taylor, Anthony P. ; Velasquez-Garcia, Luis Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-9bdf9266c76d726d8e0138b22cf57d98d8ba0b0dc42cd74967af454ce6bbede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D printing of microsystems</topic><topic>diaphragm pump</topic><topic>miniature vacuum pump</topic><topic>Optical surface waves</topic><topic>polyjet printing</topic><topic>Rough surfaces</topic><topic>Surface roughness</topic><topic>Surface topography</topic><topic>Three-dimensional printing</topic><topic>vacuum microelectro-mechanical systems (MEMS)</topic><topic>Vacuum technology</topic><topic>Young's modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Anthony P.</creatorcontrib><creatorcontrib>Velasquez-Garcia, Luis Fernando</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Anthony P.</au><au>Velasquez-Garcia, Luis Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized Diaphragm Vacuum Pump by Multi-Material Additive Manufacturing</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2017-12</date><risdate>2017</risdate><volume>26</volume><issue>6</issue><spage>1316</spage><epage>1326</epage><pages>1316-1326</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>This paper reports the first demonstration of a multi-material, fully additively manufactured, miniature diaphragm pump for creation and maintenance of low vacuum from atmospheric conditions. Using polyjet 3-D printing technology with 42 μm XY pixelation and 16 μm or 25 μm tall voxels, a single-stage vacuum pump design with active valves that has a total pumping volume of 1 cm 3 with 5% dead volume was implemented. Optimization of the devices resulted in manufacturing different constitutive parts of the pump in flexible materials of different stiffness. Finite element simulations of the pump design estimate at 0.20 MPa the maximum stress on the piston diaphragm root at full actuation, and at 106 Hz the natural frequency of the compression chamber. While operating at 1.82 Hz, the devices consistently pumped down from atmospheric pressure to 110 Torr in under 4 s, which is the smallest and fastest base pressure reported in the literature for a microfabricated diaphragm vacuum pump. In addition, the pumps can deliver mass flow rates as high as 200 sccm at 535 Torr, which is much higher than any of the reported flow rates from a diaphragm vacuum pump manufactured with standard microfabrication. The outgassing rate of the TangoBlack Plus® photopolymer used to print the pumps was measured and is on par with vacuum compatible elastomers. Compression chamber diaphragms exhibited lifetimes approaching 1 millioncycles, while the valves membranes have not leaked after over 2 million cycles.</abstract><pub>IEEE</pub><doi>10.1109/JMEMS.2017.2743020</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9232-1244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2017-12, Vol.26 (6), p.1316-1326
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2017_2743020
source IEEE Electronic Library (IEL)
subjects 3-D printing of microsystems
diaphragm pump
miniature vacuum pump
Optical surface waves
polyjet printing
Rough surfaces
Surface roughness
Surface topography
Three-dimensional printing
vacuum microelectro-mechanical systems (MEMS)
Vacuum technology
Young's modulus
title Miniaturized Diaphragm Vacuum Pump by Multi-Material Additive Manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20Diaphragm%20Vacuum%20Pump%20by%20Multi-Material%20Additive%20Manufacturing&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Taylor,%20Anthony%20P.&rft.date=2017-12&rft.volume=26&rft.issue=6&rft.spage=1316&rft.epage=1326&rft.pages=1316-1326&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2017.2743020&rft_dat=%3Ccrossref_ieee_%3E10_1109_JMEMS_2017_2743020%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8026556&rfr_iscdi=true