Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester
Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and dou...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2017-06, Vol.26 (3), p.539-549 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | 3 |
container_start_page | 539 |
container_title | Journal of microelectromechanical systems |
container_volume | 26 |
creator | Podder, Pranay Constantinou, Peter Mallick, Dhiman Amann, Andreas Roy, Saibal |
description | Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability. |
doi_str_mv | 10.1109/JMEMS.2017.2672638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2017_2672638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7879248</ieee_id><sourcerecordid>1905721373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</originalsourceid><addsrcrecordid>eNo9kMtOAjEUhhujiYi-gG6auB7sdTpdGjOKBnQhum3K9AwpgRY7gwlvbxF09Z_Ff8n5ELqmZEQp0Xcv03r6PmKEqhErFSt5dYIGVAtaECqr03wTqQpFpTpHF123JIQKUZUDNJnaRYDeN3i2DT4scGzxawwrH8AmvG_F9QqaPsX1n_HTz5PtfQy4DpAWOzy26Ru6HtIlOmvtqoOrow7Rx2M9exgXk7en54f7SdFwIfpCE6c4EwRsw0FXTikHjpVCE-pAaS6FYrolUrSCzwGkKl3rQM6zaitKzYfo9tC7SfFrm6fNMm5TyJOG6vwoo1zx7GIHV5Ni1yVozSb5tU07Q4nZUzO_1MyemjlSy6GbQ8gDwH9AVUozUfEft9FoXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905721373</pqid></control><display><type>article</type><title>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</title><source>IEEE Electronic Library (IEL)</source><creator>Podder, Pranay ; Constantinou, Peter ; Mallick, Dhiman ; Amann, Andreas ; Roy, Saibal</creator><creatorcontrib>Podder, Pranay ; Constantinou, Peter ; Mallick, Dhiman ; Amann, Andreas ; Roy, Saibal</creatorcontrib><description>Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2017.2672638</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coiling ; Coils ; Computer simulation ; Copper ; double-layer ; electromagnetic (EM) devices ; energy harvester ; Energy harvesting ; Finite element method ; Frequency response ; Harvesters ; Internet of Things ; Internet of things (IoT) ; magnetic frequency tuning ; Magnetic resonance ; Magnetic separation ; Magnets ; Mathematical analysis ; Mechanical oscillators ; MEMS ; micro-coil ; micro-scale ; Microelectromechanical systems ; nonlinear ; Nonlinearity ; Oscillators ; Potential energy ; repulsion ; Silicon ; Silicon substrates ; spiral spring ; Springs ; Springs (elastic) ; Stiffness ; Tuning ; Vibration ; Vibration analysis ; Vibrations ; wideband ; wireless sensor networks</subject><ispartof>Journal of microelectromechanical systems, 2017-06, Vol.26 (3), p.539-549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</citedby><cites>FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</cites><orcidid>0000-0001-8100-0878 ; 0000-0002-6637-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7879248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7879248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Podder, Pranay</creatorcontrib><creatorcontrib>Constantinou, Peter</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><creatorcontrib>Amann, Andreas</creatorcontrib><creatorcontrib>Roy, Saibal</creatorcontrib><title>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.</description><subject>Coiling</subject><subject>Coils</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>double-layer</subject><subject>electromagnetic (EM) devices</subject><subject>energy harvester</subject><subject>Energy harvesting</subject><subject>Finite element method</subject><subject>Frequency response</subject><subject>Harvesters</subject><subject>Internet of Things</subject><subject>Internet of things (IoT)</subject><subject>magnetic frequency tuning</subject><subject>Magnetic resonance</subject><subject>Magnetic separation</subject><subject>Magnets</subject><subject>Mathematical analysis</subject><subject>Mechanical oscillators</subject><subject>MEMS</subject><subject>micro-coil</subject><subject>micro-scale</subject><subject>Microelectromechanical systems</subject><subject>nonlinear</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Potential energy</subject><subject>repulsion</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>spiral spring</subject><subject>Springs</subject><subject>Springs (elastic)</subject><subject>Stiffness</subject><subject>Tuning</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><subject>wideband</subject><subject>wireless sensor networks</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOAjEUhhujiYi-gG6auB7sdTpdGjOKBnQhum3K9AwpgRY7gwlvbxF09Z_Ff8n5ELqmZEQp0Xcv03r6PmKEqhErFSt5dYIGVAtaECqr03wTqQpFpTpHF123JIQKUZUDNJnaRYDeN3i2DT4scGzxawwrH8AmvG_F9QqaPsX1n_HTz5PtfQy4DpAWOzy26Ru6HtIlOmvtqoOrow7Rx2M9exgXk7en54f7SdFwIfpCE6c4EwRsw0FXTikHjpVCE-pAaS6FYrolUrSCzwGkKl3rQM6zaitKzYfo9tC7SfFrm6fNMm5TyJOG6vwoo1zx7GIHV5Ni1yVozSb5tU07Q4nZUzO_1MyemjlSy6GbQ8gDwH9AVUozUfEft9FoXQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Podder, Pranay</creator><creator>Constantinou, Peter</creator><creator>Mallick, Dhiman</creator><creator>Amann, Andreas</creator><creator>Roy, Saibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8100-0878</orcidid><orcidid>https://orcid.org/0000-0002-6637-2558</orcidid></search><sort><creationdate>20170601</creationdate><title>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</title><author>Podder, Pranay ; Constantinou, Peter ; Mallick, Dhiman ; Amann, Andreas ; Roy, Saibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coiling</topic><topic>Coils</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>double-layer</topic><topic>electromagnetic (EM) devices</topic><topic>energy harvester</topic><topic>Energy harvesting</topic><topic>Finite element method</topic><topic>Frequency response</topic><topic>Harvesters</topic><topic>Internet of Things</topic><topic>Internet of things (IoT)</topic><topic>magnetic frequency tuning</topic><topic>Magnetic resonance</topic><topic>Magnetic separation</topic><topic>Magnets</topic><topic>Mathematical analysis</topic><topic>Mechanical oscillators</topic><topic>MEMS</topic><topic>micro-coil</topic><topic>micro-scale</topic><topic>Microelectromechanical systems</topic><topic>nonlinear</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Potential energy</topic><topic>repulsion</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>spiral spring</topic><topic>Springs</topic><topic>Springs (elastic)</topic><topic>Stiffness</topic><topic>Tuning</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><topic>wideband</topic><topic>wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podder, Pranay</creatorcontrib><creatorcontrib>Constantinou, Peter</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><creatorcontrib>Amann, Andreas</creatorcontrib><creatorcontrib>Roy, Saibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Podder, Pranay</au><au>Constantinou, Peter</au><au>Mallick, Dhiman</au><au>Amann, Andreas</au><au>Roy, Saibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>26</volume><issue>3</issue><spage>539</spage><epage>549</epage><pages>539-549</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2017.2672638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8100-0878</orcidid><orcidid>https://orcid.org/0000-0002-6637-2558</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2017-06, Vol.26 (3), p.539-549 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2017_2672638 |
source | IEEE Electronic Library (IEL) |
subjects | Coiling Coils Computer simulation Copper double-layer electromagnetic (EM) devices energy harvester Energy harvesting Finite element method Frequency response Harvesters Internet of Things Internet of things (IoT) magnetic frequency tuning Magnetic resonance Magnetic separation Magnets Mathematical analysis Mechanical oscillators MEMS micro-coil micro-scale Microelectromechanical systems nonlinear Nonlinearity Oscillators Potential energy repulsion Silicon Silicon substrates spiral spring Springs Springs (elastic) Stiffness Tuning Vibration Vibration analysis Vibrations wideband wireless sensor networks |
title | Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Tuning%20of%20Nonlinear%20MEMS%20Electromagnetic%20Vibration%20Energy%20Harvester&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Podder,%20Pranay&rft.date=2017-06-01&rft.volume=26&rft.issue=3&rft.spage=539&rft.epage=549&rft.pages=539-549&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2017.2672638&rft_dat=%3Cproquest_RIE%3E1905721373%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905721373&rft_id=info:pmid/&rft_ieee_id=7879248&rfr_iscdi=true |