Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester

Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and dou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2017-06, Vol.26 (3), p.539-549
Hauptverfasser: Podder, Pranay, Constantinou, Peter, Mallick, Dhiman, Amann, Andreas, Roy, Saibal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 3
container_start_page 539
container_title Journal of microelectromechanical systems
container_volume 26
creator Podder, Pranay
Constantinou, Peter
Mallick, Dhiman
Amann, Andreas
Roy, Saibal
description Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.
doi_str_mv 10.1109/JMEMS.2017.2672638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2017_2672638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7879248</ieee_id><sourcerecordid>1905721373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</originalsourceid><addsrcrecordid>eNo9kMtOAjEUhhujiYi-gG6auB7sdTpdGjOKBnQhum3K9AwpgRY7gwlvbxF09Z_Ff8n5ELqmZEQp0Xcv03r6PmKEqhErFSt5dYIGVAtaECqr03wTqQpFpTpHF123JIQKUZUDNJnaRYDeN3i2DT4scGzxawwrH8AmvG_F9QqaPsX1n_HTz5PtfQy4DpAWOzy26Ru6HtIlOmvtqoOrow7Rx2M9exgXk7en54f7SdFwIfpCE6c4EwRsw0FXTikHjpVCE-pAaS6FYrolUrSCzwGkKl3rQM6zaitKzYfo9tC7SfFrm6fNMm5TyJOG6vwoo1zx7GIHV5Ni1yVozSb5tU07Q4nZUzO_1MyemjlSy6GbQ8gDwH9AVUozUfEft9FoXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905721373</pqid></control><display><type>article</type><title>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</title><source>IEEE Electronic Library (IEL)</source><creator>Podder, Pranay ; Constantinou, Peter ; Mallick, Dhiman ; Amann, Andreas ; Roy, Saibal</creator><creatorcontrib>Podder, Pranay ; Constantinou, Peter ; Mallick, Dhiman ; Amann, Andreas ; Roy, Saibal</creatorcontrib><description>Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2017.2672638</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coiling ; Coils ; Computer simulation ; Copper ; double-layer ; electromagnetic (EM) devices ; energy harvester ; Energy harvesting ; Finite element method ; Frequency response ; Harvesters ; Internet of Things ; Internet of things (IoT) ; magnetic frequency tuning ; Magnetic resonance ; Magnetic separation ; Magnets ; Mathematical analysis ; Mechanical oscillators ; MEMS ; micro-coil ; micro-scale ; Microelectromechanical systems ; nonlinear ; Nonlinearity ; Oscillators ; Potential energy ; repulsion ; Silicon ; Silicon substrates ; spiral spring ; Springs ; Springs (elastic) ; Stiffness ; Tuning ; Vibration ; Vibration analysis ; Vibrations ; wideband ; wireless sensor networks</subject><ispartof>Journal of microelectromechanical systems, 2017-06, Vol.26 (3), p.539-549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</citedby><cites>FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</cites><orcidid>0000-0001-8100-0878 ; 0000-0002-6637-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7879248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7879248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Podder, Pranay</creatorcontrib><creatorcontrib>Constantinou, Peter</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><creatorcontrib>Amann, Andreas</creatorcontrib><creatorcontrib>Roy, Saibal</creatorcontrib><title>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.</description><subject>Coiling</subject><subject>Coils</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>double-layer</subject><subject>electromagnetic (EM) devices</subject><subject>energy harvester</subject><subject>Energy harvesting</subject><subject>Finite element method</subject><subject>Frequency response</subject><subject>Harvesters</subject><subject>Internet of Things</subject><subject>Internet of things (IoT)</subject><subject>magnetic frequency tuning</subject><subject>Magnetic resonance</subject><subject>Magnetic separation</subject><subject>Magnets</subject><subject>Mathematical analysis</subject><subject>Mechanical oscillators</subject><subject>MEMS</subject><subject>micro-coil</subject><subject>micro-scale</subject><subject>Microelectromechanical systems</subject><subject>nonlinear</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Potential energy</subject><subject>repulsion</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>spiral spring</subject><subject>Springs</subject><subject>Springs (elastic)</subject><subject>Stiffness</subject><subject>Tuning</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibrations</subject><subject>wideband</subject><subject>wireless sensor networks</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOAjEUhhujiYi-gG6auB7sdTpdGjOKBnQhum3K9AwpgRY7gwlvbxF09Z_Ff8n5ELqmZEQp0Xcv03r6PmKEqhErFSt5dYIGVAtaECqr03wTqQpFpTpHF123JIQKUZUDNJnaRYDeN3i2DT4scGzxawwrH8AmvG_F9QqaPsX1n_HTz5PtfQy4DpAWOzy26Ru6HtIlOmvtqoOrow7Rx2M9exgXk7en54f7SdFwIfpCE6c4EwRsw0FXTikHjpVCE-pAaS6FYrolUrSCzwGkKl3rQM6zaitKzYfo9tC7SfFrm6fNMm5TyJOG6vwoo1zx7GIHV5Ni1yVozSb5tU07Q4nZUzO_1MyemjlSy6GbQ8gDwH9AVUozUfEft9FoXQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Podder, Pranay</creator><creator>Constantinou, Peter</creator><creator>Mallick, Dhiman</creator><creator>Amann, Andreas</creator><creator>Roy, Saibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8100-0878</orcidid><orcidid>https://orcid.org/0000-0002-6637-2558</orcidid></search><sort><creationdate>20170601</creationdate><title>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</title><author>Podder, Pranay ; Constantinou, Peter ; Mallick, Dhiman ; Amann, Andreas ; Roy, Saibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-90d73240eac3e98d77ded264901de79354729f054f43bee576dfde5b76d9a4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coiling</topic><topic>Coils</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>double-layer</topic><topic>electromagnetic (EM) devices</topic><topic>energy harvester</topic><topic>Energy harvesting</topic><topic>Finite element method</topic><topic>Frequency response</topic><topic>Harvesters</topic><topic>Internet of Things</topic><topic>Internet of things (IoT)</topic><topic>magnetic frequency tuning</topic><topic>Magnetic resonance</topic><topic>Magnetic separation</topic><topic>Magnets</topic><topic>Mathematical analysis</topic><topic>Mechanical oscillators</topic><topic>MEMS</topic><topic>micro-coil</topic><topic>micro-scale</topic><topic>Microelectromechanical systems</topic><topic>nonlinear</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Potential energy</topic><topic>repulsion</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>spiral spring</topic><topic>Springs</topic><topic>Springs (elastic)</topic><topic>Stiffness</topic><topic>Tuning</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibrations</topic><topic>wideband</topic><topic>wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podder, Pranay</creatorcontrib><creatorcontrib>Constantinou, Peter</creatorcontrib><creatorcontrib>Mallick, Dhiman</creatorcontrib><creatorcontrib>Amann, Andreas</creatorcontrib><creatorcontrib>Roy, Saibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Podder, Pranay</au><au>Constantinou, Peter</au><au>Mallick, Dhiman</au><au>Amann, Andreas</au><au>Roy, Saibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>26</volume><issue>3</issue><spage>539</spage><epage>549</epage><pages>539-549</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Ambient mechanical vibrations are an untapped yet attractive energy source for powering wireless sensor nodes in the upcoming Internet-of-Things. Here we demonstrate the magnetically induced frequency tuning effect in a MEMS electromagnetic vibrational energy harvester. Spiral-shaped springs and double-layer copper micro-coils are fabricated on silicon substrate using MEMS fabrication processes. Numerical simulations and finite-element analysis exhibit substantial transformation in the potential energy and stiffness profiles due to controlled changes in the magnetic repulsion force between the transducing and tuning magnets, which effectively modifies the frequency response profile. Specifically, by increasing the repulsive interaction between the transducing and tuning magnets, both the linear and nonlinear frequency response profiles can be shifted toward higher frequencies. This experimentally validated magnetic tuning mechanism can potentially be implemented in MEMS vibrational energy harvesters with other transduction mechanisms and in other micro-mechanical oscillators for broader frequency response tunability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2017.2672638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8100-0878</orcidid><orcidid>https://orcid.org/0000-0002-6637-2558</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2017-06, Vol.26 (3), p.539-549
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2017_2672638
source IEEE Electronic Library (IEL)
subjects Coiling
Coils
Computer simulation
Copper
double-layer
electromagnetic (EM) devices
energy harvester
Energy harvesting
Finite element method
Frequency response
Harvesters
Internet of Things
Internet of things (IoT)
magnetic frequency tuning
Magnetic resonance
Magnetic separation
Magnets
Mathematical analysis
Mechanical oscillators
MEMS
micro-coil
micro-scale
Microelectromechanical systems
nonlinear
Nonlinearity
Oscillators
Potential energy
repulsion
Silicon
Silicon substrates
spiral spring
Springs
Springs (elastic)
Stiffness
Tuning
Vibration
Vibration analysis
Vibrations
wideband
wireless sensor networks
title Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Tuning%20of%20Nonlinear%20MEMS%20Electromagnetic%20Vibration%20Energy%20Harvester&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Podder,%20Pranay&rft.date=2017-06-01&rft.volume=26&rft.issue=3&rft.spage=539&rft.epage=549&rft.pages=539-549&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2017.2672638&rft_dat=%3Cproquest_RIE%3E1905721373%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905721373&rft_id=info:pmid/&rft_ieee_id=7879248&rfr_iscdi=true