Performance of Electro-Thermally Driven -Based MEMS Actuators

The integration of VO 2 thin films in a MEMS actuator device is presented. The structural phase transition of VO 2 was induced electro-thermally by resistive heaters monolithically integrated in the MEMS actuator. The drastic mechanical displacements generated by the large stress induced during the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2014-02, Vol.23 (1), p.243-251
Hauptverfasser: Cabrera, Rafmag, Merced, Emmanuelle, Sepulveda, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 243
container_title Journal of microelectromechanical systems
container_volume 23
creator Cabrera, Rafmag
Merced, Emmanuelle
Sepulveda, Nelson
description The integration of VO 2 thin films in a MEMS actuator device is presented. The structural phase transition of VO 2 was induced electro-thermally by resistive heaters monolithically integrated in the MEMS actuator. The drastic mechanical displacements generated by the large stress induced during the VO 2 thin film phase transition have been characterized for static and time-dependent current pulses to the resistive heater, for air and vacuum environments. A comprehensive and simplified finite element model is developed and validated with experimental data. It was found that the cut-off frequency of the 300 μm-long VO 2 -based MEMS actuator operated in vacuum (f 3dB =29 Hz) was mostly limited by conductive heat loss through the anchor, whereas convection losses were more dominant in air (f 3dB =541 Hz). The cut-off frequency is found to be strongly dependent on the dimensions of the cantilever when operated in air but far less dependent when operated in vacuum. Total deflections of 68.7 and 28.5 μm were observed for 300 and 200 μm-long MEMS cantilevers, respectively. Full actuation in air required ~ 16 times more power than in vacuum.
doi_str_mv 10.1109/JMEMS.2013.2271774
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2013_2271774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6560383</ieee_id><sourcerecordid>3238360871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2064-93129991041a7c73a043ad741a55da34193f2a0bb829e3f3d149ce7d08c041193</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujifj4A7qZxHXx3j6m04ULRHwFoom4bkqnEyEDxXYw4d9bhLi6r_PdkxxCrhD6iKBvXyejyUefAfI-YwqVEkekh1ogBZTVce5BKqpQqlNyltICAIWoyh65e_exCXFpV84XoSlGrXddDHT65fOybbfFQ5z_-FVB723ydbHzKQau29guxHRBThrbJn95qOfk83E0HT7T8dvTy3Awpo5BKajmyLTWCAKtcopbENzWKk9S1pYL1LxhFmazimnPG16j0M6rGiqXkXw9Jzf7v-sYvjc-dWYRNnGVLQ1KECXDkomsYnuViyGl6BuzjvOljVuDYHYxmb-YzC4mc4gpQ9d7aO69_wdKWQKvOP8FOXBgzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504621624</pqid></control><display><type>article</type><title>Performance of Electro-Thermally Driven -Based MEMS Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Cabrera, Rafmag ; Merced, Emmanuelle ; Sepulveda, Nelson</creator><creatorcontrib>Cabrera, Rafmag ; Merced, Emmanuelle ; Sepulveda, Nelson</creatorcontrib><description>The integration of VO 2 thin films in a MEMS actuator device is presented. The structural phase transition of VO 2 was induced electro-thermally by resistive heaters monolithically integrated in the MEMS actuator. The drastic mechanical displacements generated by the large stress induced during the VO 2 thin film phase transition have been characterized for static and time-dependent current pulses to the resistive heater, for air and vacuum environments. A comprehensive and simplified finite element model is developed and validated with experimental data. It was found that the cut-off frequency of the 300 μm-long VO 2 -based MEMS actuator operated in vacuum (f 3dB =29 Hz) was mostly limited by conductive heat loss through the anchor, whereas convection losses were more dominant in air (f 3dB =541 Hz). The cut-off frequency is found to be strongly dependent on the dimensions of the cantilever when operated in air but far less dependent when operated in vacuum. Total deflections of 68.7 and 28.5 μm were observed for 300 and 200 μm-long MEMS cantilevers, respectively. Full actuation in air required ~ 16 times more power than in vacuum.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2013.2271774</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>actuator dynamics ; Actuators ; Atmospheric modeling ; Crystals ; Design engineering ; Finite element analysis ; Heating ; MEMS actuators ; Micromechanical devices ; phase transition ; Phase transitions ; Thermal expansion ; vanadium dioxide</subject><ispartof>Journal of microelectromechanical systems, 2014-02, Vol.23 (1), p.243-251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2064-93129991041a7c73a043ad741a55da34193f2a0bb829e3f3d149ce7d08c041193</citedby><cites>FETCH-LOGICAL-c2064-93129991041a7c73a043ad741a55da34193f2a0bb829e3f3d149ce7d08c041193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6560383$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6560383$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cabrera, Rafmag</creatorcontrib><creatorcontrib>Merced, Emmanuelle</creatorcontrib><creatorcontrib>Sepulveda, Nelson</creatorcontrib><title>Performance of Electro-Thermally Driven -Based MEMS Actuators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>The integration of VO 2 thin films in a MEMS actuator device is presented. The structural phase transition of VO 2 was induced electro-thermally by resistive heaters monolithically integrated in the MEMS actuator. The drastic mechanical displacements generated by the large stress induced during the VO 2 thin film phase transition have been characterized for static and time-dependent current pulses to the resistive heater, for air and vacuum environments. A comprehensive and simplified finite element model is developed and validated with experimental data. It was found that the cut-off frequency of the 300 μm-long VO 2 -based MEMS actuator operated in vacuum (f 3dB =29 Hz) was mostly limited by conductive heat loss through the anchor, whereas convection losses were more dominant in air (f 3dB =541 Hz). The cut-off frequency is found to be strongly dependent on the dimensions of the cantilever when operated in air but far less dependent when operated in vacuum. Total deflections of 68.7 and 28.5 μm were observed for 300 and 200 μm-long MEMS cantilevers, respectively. Full actuation in air required ~ 16 times more power than in vacuum.</description><subject>actuator dynamics</subject><subject>Actuators</subject><subject>Atmospheric modeling</subject><subject>Crystals</subject><subject>Design engineering</subject><subject>Finite element analysis</subject><subject>Heating</subject><subject>MEMS actuators</subject><subject>Micromechanical devices</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Thermal expansion</subject><subject>vanadium dioxide</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujifj4A7qZxHXx3j6m04ULRHwFoom4bkqnEyEDxXYw4d9bhLi6r_PdkxxCrhD6iKBvXyejyUefAfI-YwqVEkekh1ogBZTVce5BKqpQqlNyltICAIWoyh65e_exCXFpV84XoSlGrXddDHT65fOybbfFQ5z_-FVB723ydbHzKQau29guxHRBThrbJn95qOfk83E0HT7T8dvTy3Awpo5BKajmyLTWCAKtcopbENzWKk9S1pYL1LxhFmazimnPG16j0M6rGiqXkXw9Jzf7v-sYvjc-dWYRNnGVLQ1KECXDkomsYnuViyGl6BuzjvOljVuDYHYxmb-YzC4mc4gpQ9d7aO69_wdKWQKvOP8FOXBgzw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Cabrera, Rafmag</creator><creator>Merced, Emmanuelle</creator><creator>Sepulveda, Nelson</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201402</creationdate><title>Performance of Electro-Thermally Driven -Based MEMS Actuators</title><author>Cabrera, Rafmag ; Merced, Emmanuelle ; Sepulveda, Nelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2064-93129991041a7c73a043ad741a55da34193f2a0bb829e3f3d149ce7d08c041193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>actuator dynamics</topic><topic>Actuators</topic><topic>Atmospheric modeling</topic><topic>Crystals</topic><topic>Design engineering</topic><topic>Finite element analysis</topic><topic>Heating</topic><topic>MEMS actuators</topic><topic>Micromechanical devices</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Thermal expansion</topic><topic>vanadium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera, Rafmag</creatorcontrib><creatorcontrib>Merced, Emmanuelle</creatorcontrib><creatorcontrib>Sepulveda, Nelson</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabrera, Rafmag</au><au>Merced, Emmanuelle</au><au>Sepulveda, Nelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of Electro-Thermally Driven -Based MEMS Actuators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2014-02</date><risdate>2014</risdate><volume>23</volume><issue>1</issue><spage>243</spage><epage>251</epage><pages>243-251</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>The integration of VO 2 thin films in a MEMS actuator device is presented. The structural phase transition of VO 2 was induced electro-thermally by resistive heaters monolithically integrated in the MEMS actuator. The drastic mechanical displacements generated by the large stress induced during the VO 2 thin film phase transition have been characterized for static and time-dependent current pulses to the resistive heater, for air and vacuum environments. A comprehensive and simplified finite element model is developed and validated with experimental data. It was found that the cut-off frequency of the 300 μm-long VO 2 -based MEMS actuator operated in vacuum (f 3dB =29 Hz) was mostly limited by conductive heat loss through the anchor, whereas convection losses were more dominant in air (f 3dB =541 Hz). The cut-off frequency is found to be strongly dependent on the dimensions of the cantilever when operated in air but far less dependent when operated in vacuum. Total deflections of 68.7 and 28.5 μm were observed for 300 and 200 μm-long MEMS cantilevers, respectively. Full actuation in air required ~ 16 times more power than in vacuum.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2013.2271774</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2014-02, Vol.23 (1), p.243-251
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2013_2271774
source IEEE Electronic Library (IEL)
subjects actuator dynamics
Actuators
Atmospheric modeling
Crystals
Design engineering
Finite element analysis
Heating
MEMS actuators
Micromechanical devices
phase transition
Phase transitions
Thermal expansion
vanadium dioxide
title Performance of Electro-Thermally Driven -Based MEMS Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20Electro-Thermally%20Driven%20-Based%20MEMS%20Actuators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Cabrera,%20Rafmag&rft.date=2014-02&rft.volume=23&rft.issue=1&rft.spage=243&rft.epage=251&rft.pages=243-251&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2013.2271774&rft_dat=%3Cproquest_RIE%3E3238360871%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504621624&rft_id=info:pmid/&rft_ieee_id=6560383&rfr_iscdi=true