Dynamic Synthesis of Microsystems Using the Segment Rayleigh-Ritz Method

Microsystem development requires accurate and parametric-based modeling as well as experimental validation of the effects of multiphysics influences such as electrostatic, thermal, and mechanical on microsystems in a systematic manner. This work attempts to synthesize the influence of electrothermom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2008-12, Vol.17 (6), p.1468-1480
Hauptverfasser: Rinaldi, G., Packirisamy, M., Stiharu, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 6
container_start_page 1468
container_title Journal of microelectromechanical systems
container_volume 17
creator Rinaldi, G.
Packirisamy, M.
Stiharu, I.
description Microsystem development requires accurate and parametric-based modeling as well as experimental validation of the effects of multiphysics influences such as electrostatic, thermal, and mechanical on microsystems in a systematic manner. This work attempts to synthesize the influence of electrothermomechanical influences on microsystems using an energy-based method, namely, the segment Rayleigh-Ritz (SRR), thereby making it possible to study the multiphysics influences on the dynamic behavior of microsystems in a simplified and unified way. Electrostatic, thermal, and geometrical influences along with microfabrication limitations related to the boundary support are studied on cantilever-based microsystems. Silicon-on-insulator-based technology is used for demonstration purposes. The SRR energy method was developed in order to improve the theoretical formulation for microsystems with nonuniform properties. The method of artificial springs is employed to model the boundary support, electrostatic influences, and intersegmental boundaries. The microfabricated support conditions were quantified through a rotational stiffness, and its invariance with geometry, temperature, and electrostatic field was verified through dynamic testing under electrothermal influences. Comparison with test results validates the dynamic synthesis modeling for microstructures. This approach can be expanded further to nondimensional design optimization and for targeted performance tuning of the static and dynamic behavior of microsystems.
doi_str_mv 10.1109/JMEMS.2008.2004952
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2008_2004952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663116</ieee_id><sourcerecordid>2545501691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-900e4278a1254f3b6831d1528da9db89aaca6c89a1c328411391d0720561370c3</originalsourceid><addsrcrecordid>eNqFkUtP40AQhC20SMuG_QPLxVppFy4O3fOe44pXQERIZDlbw3icTOQHeJyD-fWMScSBA1y6W-qv6lCVJL8QpoigT2_mF_PFlACocTDNyV5ygJphBsjVt3gDl5lELr8nP0JYAyBjShwks_OhMbW36WJo-pULPqRtmc697dowhN7VIX0Ivlmm8Zku3LJ2TZ_em6FyfrnK7n3_ks5dv2qLw2S_NFVwP3d7kjxcXvw_m2W3d1fXZ_9uM8s46TMN4BiRyiDhrKSPQlEskBNVGF08Km2MNcLGjZYSxRCpxgIkAS6QSrB0khxvfZ-69nnjQp_XPlhXVaZx7SbkGqgglAJ-SSoFgkngPJJ_PyUpYzE-qiJ48imIQIjSmooR_f0BXbebronR5BoJlUwoiBDZQmPcoXNl_tT52nRDdMrHYvO3YvOx2HxXbBT92TmbYE1VdqaxPrwrSdRJpkfzoy3nnXPvbyYERRT0FRSbqG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912374680</pqid></control><display><type>article</type><title>Dynamic Synthesis of Microsystems Using the Segment Rayleigh-Ritz Method</title><source>IEEE Xplore Digital Library</source><creator>Rinaldi, G. ; Packirisamy, M. ; Stiharu, I.</creator><creatorcontrib>Rinaldi, G. ; Packirisamy, M. ; Stiharu, I.</creatorcontrib><description>Microsystem development requires accurate and parametric-based modeling as well as experimental validation of the effects of multiphysics influences such as electrostatic, thermal, and mechanical on microsystems in a systematic manner. This work attempts to synthesize the influence of electrothermomechanical influences on microsystems using an energy-based method, namely, the segment Rayleigh-Ritz (SRR), thereby making it possible to study the multiphysics influences on the dynamic behavior of microsystems in a simplified and unified way. Electrostatic, thermal, and geometrical influences along with microfabrication limitations related to the boundary support are studied on cantilever-based microsystems. Silicon-on-insulator-based technology is used for demonstration purposes. The SRR energy method was developed in order to improve the theoretical formulation for microsystems with nonuniform properties. The method of artificial springs is employed to model the boundary support, electrostatic influences, and intersegmental boundaries. The microfabricated support conditions were quantified through a rotational stiffness, and its invariance with geometry, temperature, and electrostatic field was verified through dynamic testing under electrothermal influences. Comparison with test results validates the dynamic synthesis modeling for microstructures. This approach can be expanded further to nondimensional design optimization and for targeted performance tuning of the static and dynamic behavior of microsystems.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2008.2004952</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial springs ; Biomedical optical imaging ; Boundaries ; Design optimization ; dynamic analysis ; Dynamic tests ; Dynamics ; Electrostatics ; Electrothermal effects ; Exact sciences and technology ; Geometrical optics ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; laser Doppler velocimetry ; Mathematical models ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Micromechanical devices and systems ; Microstructure ; microsystem synthesis ; multiphysics environment ; Nonuniform ; Optical attenuators ; Optical sensors ; Optical waveguides ; Physics ; Precision engineering, watch making ; segment Rayleigh-Ritz (SRR) ; Segments ; Springs ; Studies ; Synthesis ; Testing ; Tuning</subject><ispartof>Journal of microelectromechanical systems, 2008-12, Vol.17 (6), p.1468-1480</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-900e4278a1254f3b6831d1528da9db89aaca6c89a1c328411391d0720561370c3</citedby><cites>FETCH-LOGICAL-c452t-900e4278a1254f3b6831d1528da9db89aaca6c89a1c328411391d0720561370c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21107490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinaldi, G.</creatorcontrib><creatorcontrib>Packirisamy, M.</creatorcontrib><creatorcontrib>Stiharu, I.</creatorcontrib><title>Dynamic Synthesis of Microsystems Using the Segment Rayleigh-Ritz Method</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Microsystem development requires accurate and parametric-based modeling as well as experimental validation of the effects of multiphysics influences such as electrostatic, thermal, and mechanical on microsystems in a systematic manner. This work attempts to synthesize the influence of electrothermomechanical influences on microsystems using an energy-based method, namely, the segment Rayleigh-Ritz (SRR), thereby making it possible to study the multiphysics influences on the dynamic behavior of microsystems in a simplified and unified way. Electrostatic, thermal, and geometrical influences along with microfabrication limitations related to the boundary support are studied on cantilever-based microsystems. Silicon-on-insulator-based technology is used for demonstration purposes. The SRR energy method was developed in order to improve the theoretical formulation for microsystems with nonuniform properties. The method of artificial springs is employed to model the boundary support, electrostatic influences, and intersegmental boundaries. The microfabricated support conditions were quantified through a rotational stiffness, and its invariance with geometry, temperature, and electrostatic field was verified through dynamic testing under electrothermal influences. Comparison with test results validates the dynamic synthesis modeling for microstructures. This approach can be expanded further to nondimensional design optimization and for targeted performance tuning of the static and dynamic behavior of microsystems.</description><subject>Applied sciences</subject><subject>Artificial springs</subject><subject>Biomedical optical imaging</subject><subject>Boundaries</subject><subject>Design optimization</subject><subject>dynamic analysis</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electrostatics</subject><subject>Electrothermal effects</subject><subject>Exact sciences and technology</subject><subject>Geometrical optics</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>laser Doppler velocimetry</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices and systems</subject><subject>Microstructure</subject><subject>microsystem synthesis</subject><subject>multiphysics environment</subject><subject>Nonuniform</subject><subject>Optical attenuators</subject><subject>Optical sensors</subject><subject>Optical waveguides</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>segment Rayleigh-Ritz (SRR)</subject><subject>Segments</subject><subject>Springs</subject><subject>Studies</subject><subject>Synthesis</subject><subject>Testing</subject><subject>Tuning</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUtP40AQhC20SMuG_QPLxVppFy4O3fOe44pXQERIZDlbw3icTOQHeJyD-fWMScSBA1y6W-qv6lCVJL8QpoigT2_mF_PFlACocTDNyV5ygJphBsjVt3gDl5lELr8nP0JYAyBjShwks_OhMbW36WJo-pULPqRtmc697dowhN7VIX0Ivlmm8Zku3LJ2TZ_em6FyfrnK7n3_ks5dv2qLw2S_NFVwP3d7kjxcXvw_m2W3d1fXZ_9uM8s46TMN4BiRyiDhrKSPQlEskBNVGF08Km2MNcLGjZYSxRCpxgIkAS6QSrB0khxvfZ-69nnjQp_XPlhXVaZx7SbkGqgglAJ-SSoFgkngPJJ_PyUpYzE-qiJ48imIQIjSmooR_f0BXbebronR5BoJlUwoiBDZQmPcoXNl_tT52nRDdMrHYvO3YvOx2HxXbBT92TmbYE1VdqaxPrwrSdRJpkfzoy3nnXPvbyYERRT0FRSbqG4</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Rinaldi, G.</creator><creator>Packirisamy, M.</creator><creator>Stiharu, I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20081201</creationdate><title>Dynamic Synthesis of Microsystems Using the Segment Rayleigh-Ritz Method</title><author>Rinaldi, G. ; Packirisamy, M. ; Stiharu, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-900e4278a1254f3b6831d1528da9db89aaca6c89a1c328411391d0720561370c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Artificial springs</topic><topic>Biomedical optical imaging</topic><topic>Boundaries</topic><topic>Design optimization</topic><topic>dynamic analysis</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electrostatics</topic><topic>Electrothermal effects</topic><topic>Exact sciences and technology</topic><topic>Geometrical optics</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>laser Doppler velocimetry</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices and systems</topic><topic>Microstructure</topic><topic>microsystem synthesis</topic><topic>multiphysics environment</topic><topic>Nonuniform</topic><topic>Optical attenuators</topic><topic>Optical sensors</topic><topic>Optical waveguides</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>segment Rayleigh-Ritz (SRR)</topic><topic>Segments</topic><topic>Springs</topic><topic>Studies</topic><topic>Synthesis</topic><topic>Testing</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinaldi, G.</creatorcontrib><creatorcontrib>Packirisamy, M.</creatorcontrib><creatorcontrib>Stiharu, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rinaldi, G.</au><au>Packirisamy, M.</au><au>Stiharu, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Synthesis of Microsystems Using the Segment Rayleigh-Ritz Method</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>17</volume><issue>6</issue><spage>1468</spage><epage>1480</epage><pages>1468-1480</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Microsystem development requires accurate and parametric-based modeling as well as experimental validation of the effects of multiphysics influences such as electrostatic, thermal, and mechanical on microsystems in a systematic manner. This work attempts to synthesize the influence of electrothermomechanical influences on microsystems using an energy-based method, namely, the segment Rayleigh-Ritz (SRR), thereby making it possible to study the multiphysics influences on the dynamic behavior of microsystems in a simplified and unified way. Electrostatic, thermal, and geometrical influences along with microfabrication limitations related to the boundary support are studied on cantilever-based microsystems. Silicon-on-insulator-based technology is used for demonstration purposes. The SRR energy method was developed in order to improve the theoretical formulation for microsystems with nonuniform properties. The method of artificial springs is employed to model the boundary support, electrostatic influences, and intersegmental boundaries. The microfabricated support conditions were quantified through a rotational stiffness, and its invariance with geometry, temperature, and electrostatic field was verified through dynamic testing under electrothermal influences. Comparison with test results validates the dynamic synthesis modeling for microstructures. This approach can be expanded further to nondimensional design optimization and for targeted performance tuning of the static and dynamic behavior of microsystems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2008.2004952</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2008-12, Vol.17 (6), p.1468-1480
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2008_2004952
source IEEE Xplore Digital Library
subjects Applied sciences
Artificial springs
Biomedical optical imaging
Boundaries
Design optimization
dynamic analysis
Dynamic tests
Dynamics
Electrostatics
Electrothermal effects
Exact sciences and technology
Geometrical optics
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
laser Doppler velocimetry
Mathematical models
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Micromechanical devices and systems
Microstructure
microsystem synthesis
multiphysics environment
Nonuniform
Optical attenuators
Optical sensors
Optical waveguides
Physics
Precision engineering, watch making
segment Rayleigh-Ritz (SRR)
Segments
Springs
Studies
Synthesis
Testing
Tuning
title Dynamic Synthesis of Microsystems Using the Segment Rayleigh-Ritz Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Synthesis%20of%20Microsystems%20Using%20the%20Segment%20Rayleigh-Ritz%20Method&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Rinaldi,%20G.&rft.date=2008-12-01&rft.volume=17&rft.issue=6&rft.spage=1468&rft.epage=1480&rft.pages=1468-1480&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2008.2004952&rft_dat=%3Cproquest_RIE%3E2545501691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912374680&rft_id=info:pmid/&rft_ieee_id=4663116&rfr_iscdi=true