Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays
In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encode...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2005-10, Vol.14 (5), p.1187-1197 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1197 |
---|---|
container_issue | 5 |
container_start_page | 1187 |
container_title | Journal of microelectromechanical systems |
container_volume | 14 |
creator | Xiaojing Zhang Chung-Chu Chen Bernstein, R.W. Zappe, S. Scott, M.P. Solgaard, O. |
description | In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process. |
doi_str_mv | 10.1109/JMEMS.2005.851834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2005_851834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1516200</ieee_id><sourcerecordid>1019658914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</originalsourceid><addsrcrecordid>eNp9kc-L1TAQx4souK7-AeIlCIqXPpOmaZOjLOsv9uFBPZdJMnGztE3N9LE8L_7rpr6FBQ-ekmE-3-8w862q54LvhODm7ef95f7rruFc7bQSWrYPqjNhWlFzofTD8ueqr3uh-sfVE6IbzkXb6u6s-r2PLqe0rNHByNw1ZHAr5vgL1phmBrNnU_I4xvkHS4EtieLW2MqQskNihfI5UVqu4wgMJ5uPiRjhGGogKvWInsWZrbep9nHCmYq-zIKc4UhPq0cBRsJnd-959f395beLj_XVlw-fLt5d1U7qbq21UYE3PefWdk70gqNuywZBKt87CRaMlR4C6r5rfKu8Ri0sNt7YYC2HIM-r1yffJaefB6R1mCI5HEeYMR1oaPR2KGMK-Oa_oODCdIUUbUFf_oPepEMuu9FgGq6U5K0skDhB5cxEGcOw5DhBPhanYYtu-BvdsEU3nKIrmld3xkAllpBhdpHuhSVHIztduBcnLiLifVuJrrjJP1VepRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920553043</pqid></control><display><type>article</type><title>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Xiaojing Zhang ; Chung-Chu Chen ; Bernstein, R.W. ; Zappe, S. ; Scott, M.P. ; Solgaard, O.</creator><creatorcontrib>Xiaojing Zhang ; Chung-Chu Chen ; Bernstein, R.W. ; Zappe, S. ; Scott, M.P. ; Solgaard, O.</creatorcontrib><description>In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2005.851834</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Arrays ; Capillary force ; Cross-disciplinary physics: materials science; rheology ; Detachment ; Displacement ; Drosophila ; Drosophila embryo ; Embryo ; Embryos ; Energy measurement ; Exact sciences and technology ; Force measurement ; force sensor ; Force sensors ; Hysteresis ; Insects ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Materials synthesis; materials processing ; Mathematical models ; Mechanical instruments, equipment and techniques ; Microelectronics ; Micromechanical devices and systems ; Numerical simulation ; optical encoder ; Optical reflection ; Optical sensors ; Physics ; Self assembly ; Semiconductor device measurement ; Silicon ; Surface energy ; surface tension</subject><ispartof>Journal of microelectromechanical systems, 2005-10, Vol.14 (5), p.1187-1197</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</citedby><cites>FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1516200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1516200$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17159368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiaojing Zhang</creatorcontrib><creatorcontrib>Chung-Chu Chen</creatorcontrib><creatorcontrib>Bernstein, R.W.</creatorcontrib><creatorcontrib>Zappe, S.</creatorcontrib><creatorcontrib>Scott, M.P.</creatorcontrib><creatorcontrib>Solgaard, O.</creatorcontrib><title>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.</description><subject>Arrays</subject><subject>Capillary force</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Detachment</subject><subject>Displacement</subject><subject>Drosophila</subject><subject>Drosophila embryo</subject><subject>Embryo</subject><subject>Embryos</subject><subject>Energy measurement</subject><subject>Exact sciences and technology</subject><subject>Force measurement</subject><subject>force sensor</subject><subject>Force sensors</subject><subject>Hysteresis</subject><subject>Insects</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mathematical models</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Microelectronics</subject><subject>Micromechanical devices and systems</subject><subject>Numerical simulation</subject><subject>optical encoder</subject><subject>Optical reflection</subject><subject>Optical sensors</subject><subject>Physics</subject><subject>Self assembly</subject><subject>Semiconductor device measurement</subject><subject>Silicon</subject><subject>Surface energy</subject><subject>surface tension</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc-L1TAQx4souK7-AeIlCIqXPpOmaZOjLOsv9uFBPZdJMnGztE3N9LE8L_7rpr6FBQ-ekmE-3-8w862q54LvhODm7ef95f7rruFc7bQSWrYPqjNhWlFzofTD8ueqr3uh-sfVE6IbzkXb6u6s-r2PLqe0rNHByNw1ZHAr5vgL1phmBrNnU_I4xvkHS4EtieLW2MqQskNihfI5UVqu4wgMJ5uPiRjhGGogKvWInsWZrbep9nHCmYq-zIKc4UhPq0cBRsJnd-959f395beLj_XVlw-fLt5d1U7qbq21UYE3PefWdk70gqNuywZBKt87CRaMlR4C6r5rfKu8Ri0sNt7YYC2HIM-r1yffJaefB6R1mCI5HEeYMR1oaPR2KGMK-Oa_oODCdIUUbUFf_oPepEMuu9FgGq6U5K0skDhB5cxEGcOw5DhBPhanYYtu-BvdsEU3nKIrmld3xkAllpBhdpHuhSVHIztduBcnLiLifVuJrrjJP1VepRI</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Xiaojing Zhang</creator><creator>Chung-Chu Chen</creator><creator>Bernstein, R.W.</creator><creator>Zappe, S.</creator><creator>Scott, M.P.</creator><creator>Solgaard, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20051001</creationdate><title>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</title><author>Xiaojing Zhang ; Chung-Chu Chen ; Bernstein, R.W. ; Zappe, S. ; Scott, M.P. ; Solgaard, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arrays</topic><topic>Capillary force</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Detachment</topic><topic>Displacement</topic><topic>Drosophila</topic><topic>Drosophila embryo</topic><topic>Embryo</topic><topic>Embryos</topic><topic>Energy measurement</topic><topic>Exact sciences and technology</topic><topic>Force measurement</topic><topic>force sensor</topic><topic>Force sensors</topic><topic>Hysteresis</topic><topic>Insects</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mathematical models</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Microelectronics</topic><topic>Micromechanical devices and systems</topic><topic>Numerical simulation</topic><topic>optical encoder</topic><topic>Optical reflection</topic><topic>Optical sensors</topic><topic>Physics</topic><topic>Self assembly</topic><topic>Semiconductor device measurement</topic><topic>Silicon</topic><topic>Surface energy</topic><topic>surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaojing Zhang</creatorcontrib><creatorcontrib>Chung-Chu Chen</creatorcontrib><creatorcontrib>Bernstein, R.W.</creatorcontrib><creatorcontrib>Zappe, S.</creatorcontrib><creatorcontrib>Scott, M.P.</creatorcontrib><creatorcontrib>Solgaard, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaojing Zhang</au><au>Chung-Chu Chen</au><au>Bernstein, R.W.</au><au>Zappe, S.</au><au>Scott, M.P.</au><au>Solgaard, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>14</volume><issue>5</issue><spage>1187</spage><epage>1197</epage><pages>1187-1197</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2005.851834</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2005-10, Vol.14 (5), p.1187-1197 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2005_851834 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Capillary force Cross-disciplinary physics: materials science rheology Detachment Displacement Drosophila Drosophila embryo Embryo Embryos Energy measurement Exact sciences and technology Force measurement force sensor Force sensors Hysteresis Insects Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Materials synthesis materials processing Mathematical models Mechanical instruments, equipment and techniques Microelectronics Micromechanical devices and systems Numerical simulation optical encoder Optical reflection Optical sensors Physics Self assembly Semiconductor device measurement Silicon Surface energy surface tension |
title | Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microoptical%20characterization%20and%20modeling%20of%20positioning%20forces%20on%20drosophila%20embryos%20self-assembled%20in%20two-dimensional%20arrays&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Xiaojing%20Zhang&rft.date=2005-10-01&rft.volume=14&rft.issue=5&rft.spage=1187&rft.epage=1197&rft.pages=1187-1197&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2005.851834&rft_dat=%3Cproquest_RIE%3E1019658914%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920553043&rft_id=info:pmid/&rft_ieee_id=1516200&rfr_iscdi=true |