Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays

In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2005-10, Vol.14 (5), p.1187-1197
Hauptverfasser: Xiaojing Zhang, Chung-Chu Chen, Bernstein, R.W., Zappe, S., Scott, M.P., Solgaard, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1197
container_issue 5
container_start_page 1187
container_title Journal of microelectromechanical systems
container_volume 14
creator Xiaojing Zhang
Chung-Chu Chen
Bernstein, R.W.
Zappe, S.
Scott, M.P.
Solgaard, O.
description In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.
doi_str_mv 10.1109/JMEMS.2005.851834
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2005_851834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1516200</ieee_id><sourcerecordid>1019658914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</originalsourceid><addsrcrecordid>eNp9kc-L1TAQx4souK7-AeIlCIqXPpOmaZOjLOsv9uFBPZdJMnGztE3N9LE8L_7rpr6FBQ-ekmE-3-8w862q54LvhODm7ef95f7rruFc7bQSWrYPqjNhWlFzofTD8ueqr3uh-sfVE6IbzkXb6u6s-r2PLqe0rNHByNw1ZHAr5vgL1phmBrNnU_I4xvkHS4EtieLW2MqQskNihfI5UVqu4wgMJ5uPiRjhGGogKvWInsWZrbep9nHCmYq-zIKc4UhPq0cBRsJnd-959f395beLj_XVlw-fLt5d1U7qbq21UYE3PefWdk70gqNuywZBKt87CRaMlR4C6r5rfKu8Ri0sNt7YYC2HIM-r1yffJaefB6R1mCI5HEeYMR1oaPR2KGMK-Oa_oODCdIUUbUFf_oPepEMuu9FgGq6U5K0skDhB5cxEGcOw5DhBPhanYYtu-BvdsEU3nKIrmld3xkAllpBhdpHuhSVHIztduBcnLiLifVuJrrjJP1VepRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920553043</pqid></control><display><type>article</type><title>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Xiaojing Zhang ; Chung-Chu Chen ; Bernstein, R.W. ; Zappe, S. ; Scott, M.P. ; Solgaard, O.</creator><creatorcontrib>Xiaojing Zhang ; Chung-Chu Chen ; Bernstein, R.W. ; Zappe, S. ; Scott, M.P. ; Solgaard, O.</creatorcontrib><description>In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2005.851834</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Arrays ; Capillary force ; Cross-disciplinary physics: materials science; rheology ; Detachment ; Displacement ; Drosophila ; Drosophila embryo ; Embryo ; Embryos ; Energy measurement ; Exact sciences and technology ; Force measurement ; force sensor ; Force sensors ; Hysteresis ; Insects ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Materials synthesis; materials processing ; Mathematical models ; Mechanical instruments, equipment and techniques ; Microelectronics ; Micromechanical devices and systems ; Numerical simulation ; optical encoder ; Optical reflection ; Optical sensors ; Physics ; Self assembly ; Semiconductor device measurement ; Silicon ; Surface energy ; surface tension</subject><ispartof>Journal of microelectromechanical systems, 2005-10, Vol.14 (5), p.1187-1197</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</citedby><cites>FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1516200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1516200$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17159368$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiaojing Zhang</creatorcontrib><creatorcontrib>Chung-Chu Chen</creatorcontrib><creatorcontrib>Bernstein, R.W.</creatorcontrib><creatorcontrib>Zappe, S.</creatorcontrib><creatorcontrib>Scott, M.P.</creatorcontrib><creatorcontrib>Solgaard, O.</creatorcontrib><title>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.</description><subject>Arrays</subject><subject>Capillary force</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Detachment</subject><subject>Displacement</subject><subject>Drosophila</subject><subject>Drosophila embryo</subject><subject>Embryo</subject><subject>Embryos</subject><subject>Energy measurement</subject><subject>Exact sciences and technology</subject><subject>Force measurement</subject><subject>force sensor</subject><subject>Force sensors</subject><subject>Hysteresis</subject><subject>Insects</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Mathematical models</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Microelectronics</subject><subject>Micromechanical devices and systems</subject><subject>Numerical simulation</subject><subject>optical encoder</subject><subject>Optical reflection</subject><subject>Optical sensors</subject><subject>Physics</subject><subject>Self assembly</subject><subject>Semiconductor device measurement</subject><subject>Silicon</subject><subject>Surface energy</subject><subject>surface tension</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc-L1TAQx4souK7-AeIlCIqXPpOmaZOjLOsv9uFBPZdJMnGztE3N9LE8L_7rpr6FBQ-ekmE-3-8w862q54LvhODm7ef95f7rruFc7bQSWrYPqjNhWlFzofTD8ueqr3uh-sfVE6IbzkXb6u6s-r2PLqe0rNHByNw1ZHAr5vgL1phmBrNnU_I4xvkHS4EtieLW2MqQskNihfI5UVqu4wgMJ5uPiRjhGGogKvWInsWZrbep9nHCmYq-zIKc4UhPq0cBRsJnd-959f395beLj_XVlw-fLt5d1U7qbq21UYE3PefWdk70gqNuywZBKt87CRaMlR4C6r5rfKu8Ri0sNt7YYC2HIM-r1yffJaefB6R1mCI5HEeYMR1oaPR2KGMK-Oa_oODCdIUUbUFf_oPepEMuu9FgGq6U5K0skDhB5cxEGcOw5DhBPhanYYtu-BvdsEU3nKIrmld3xkAllpBhdpHuhSVHIztduBcnLiLifVuJrrjJP1VepRI</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Xiaojing Zhang</creator><creator>Chung-Chu Chen</creator><creator>Bernstein, R.W.</creator><creator>Zappe, S.</creator><creator>Scott, M.P.</creator><creator>Solgaard, O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20051001</creationdate><title>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</title><author>Xiaojing Zhang ; Chung-Chu Chen ; Bernstein, R.W. ; Zappe, S. ; Scott, M.P. ; Solgaard, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-895f02700bb6c1710e84144f35d7c3aba9b3dafe8762d45d8e81be2d9bfbb0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Arrays</topic><topic>Capillary force</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Detachment</topic><topic>Displacement</topic><topic>Drosophila</topic><topic>Drosophila embryo</topic><topic>Embryo</topic><topic>Embryos</topic><topic>Energy measurement</topic><topic>Exact sciences and technology</topic><topic>Force measurement</topic><topic>force sensor</topic><topic>Force sensors</topic><topic>Hysteresis</topic><topic>Insects</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Mathematical models</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Microelectronics</topic><topic>Micromechanical devices and systems</topic><topic>Numerical simulation</topic><topic>optical encoder</topic><topic>Optical reflection</topic><topic>Optical sensors</topic><topic>Physics</topic><topic>Self assembly</topic><topic>Semiconductor device measurement</topic><topic>Silicon</topic><topic>Surface energy</topic><topic>surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaojing Zhang</creatorcontrib><creatorcontrib>Chung-Chu Chen</creatorcontrib><creatorcontrib>Bernstein, R.W.</creatorcontrib><creatorcontrib>Zappe, S.</creatorcontrib><creatorcontrib>Scott, M.P.</creatorcontrib><creatorcontrib>Solgaard, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaojing Zhang</au><au>Chung-Chu Chen</au><au>Bernstein, R.W.</au><au>Zappe, S.</au><au>Scott, M.P.</au><au>Solgaard, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>14</volume><issue>5</issue><spage>1187</spage><epage>1197</epage><pages>1187-1197</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we describe high-precision experimental and numerical characterization of the positioning forces acting on Drosophila embryos that have self-assembled onto 2-D arrays of hydrophobic sites on a silicon substrate in water. The forces measured using a surface micromachined optical-encoder force sensor operating in reflection, are in good agreement with numerical simulations based on an extended surface energy model for the oil-based fluidic system. The positioning forces of ellipsoidal embryos on flat sites show a linear-spring-like relationship between the force and displacement on rectangular as well as cross-shaped sites. An average detachment force of 8.9 /spl mu/N/spl plusmn/1.3 /spl mu/N was found for the immobilized embryos on 250 /spl mu/m/spl times/100 /spl mu/m sites. The cross-shaped site has only 19.85% of the area of the rectangular site, but provides a comparable positioning force with a significant reduction in embryo clustering. In contrast, the positioning forces of flat silicon chips, similar in size to the embryos, are linear in the displacement only over a limited range (0/spl sim/40 /spl mu/m), and are then constant up to the detachment force (25.0 /spl mu/N/spl plusmn/3.5 /spl mu/N). Our measurements also show significant hysteresis in the force vs. displacement, indicating that variations in the surface properties play an important role in the self-assembly process.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2005.851834</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2005-10, Vol.14 (5), p.1187-1197
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2005_851834
source IEEE Electronic Library (IEL)
subjects Arrays
Capillary force
Cross-disciplinary physics: materials science
rheology
Detachment
Displacement
Drosophila
Drosophila embryo
Embryo
Embryos
Energy measurement
Exact sciences and technology
Force measurement
force sensor
Force sensors
Hysteresis
Insects
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Materials synthesis
materials processing
Mathematical models
Mechanical instruments, equipment and techniques
Microelectronics
Micromechanical devices and systems
Numerical simulation
optical encoder
Optical reflection
Optical sensors
Physics
Self assembly
Semiconductor device measurement
Silicon
Surface energy
surface tension
title Microoptical characterization and modeling of positioning forces on drosophila embryos self-assembled in two-dimensional arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microoptical%20characterization%20and%20modeling%20of%20positioning%20forces%20on%20drosophila%20embryos%20self-assembled%20in%20two-dimensional%20arrays&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Xiaojing%20Zhang&rft.date=2005-10-01&rft.volume=14&rft.issue=5&rft.spage=1187&rft.epage=1197&rft.pages=1187-1197&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2005.851834&rft_dat=%3Cproquest_RIE%3E1019658914%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920553043&rft_id=info:pmid/&rft_ieee_id=1516200&rfr_iscdi=true