Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices
This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2005-04, Vol.14 (2), p.400-409 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 400 |
container_title | Journal of microelectromechanical systems |
container_volume | 14 |
creator | Tao Wang McCandless, A.B. Lienau, R.M. Kelly, K.W. Hensley, D. Desta, Y. Zhong-Geng Ling |
description | This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (>4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features. |
doi_str_mv | 10.1109/JMEMS.2004.839339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2004_839339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1416916</ieee_id><sourcerecordid>28014087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AiCur0DxAvxYN46XyvSdP0KLL5gw0P6rmk6esWaZuZdAP_ezMnCB7EU97h876Q942iM4QxIhTXj_PJ_HmcAvCxZAVjxV50hAXHBDCT-2GGLE9yzPLD6Nj7NwDkXIqjaDZVlTNaDcb2sW3izva2NcPS6Lhbt4NpaUNtvDSLZaL8ivSQuK2NG3LOdmrR0xBoTRujyZ9EB41qPZ1-v6PodTp5ub1PZk93D7c3s0QzmQ8JrxhhVVc5T9MGJDHZ1LxWRSqYZBIlkKZKV6kUkFdKk9B1pgkJ0gyEaCo2ii53uStn39fkh7IzXlPbqp7s2pepDDcRQv4DhjuAzAO8-hMiYCEywWFLL37RN7t2ffhvWaSQCZQoAsId0s5676gpV850yn2EpHJbWPlVWLktrNwVFnbOdzuGiH48R1GExE9Hq5Hy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920561816</pqid></control><display><type>article</type><title>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</title><source>IEEE Electronic Library (IEL)</source><creator>Tao Wang ; McCandless, A.B. ; Lienau, R.M. ; Kelly, K.W. ; Hensley, D. ; Desta, Y. ; Zhong-Geng Ling</creator><creatorcontrib>Tao Wang ; McCandless, A.B. ; Lienau, R.M. ; Kelly, K.W. ; Hensley, D. ; Desta, Y. ; Zhong-Geng Ling</creatorcontrib><description>This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (>4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2004.839339</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; alignment X-ray lithography ; Circuits ; Dispersion ; electrodeposition ; etching ; Fabrication ; Ferromagnetism ; Gold ; HARM ; Intermetallics ; LIGA ; Masks ; Microstructure ; multilevel ferromagnetic structures ; Nickel base alloys ; NiFe ; Polymethyl methacrylate ; Polymethyl methacrylates ; Resists ; Semiconductors ; Silicon ; Spectroscopy ; Spectrum analysis ; Sputter etching ; X-ray lithography ; X-ray mask ; X-rays</subject><ispartof>Journal of microelectromechanical systems, 2005-04, Vol.14 (2), p.400-409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</citedby><cites>FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1416916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1416916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>McCandless, A.B.</creatorcontrib><creatorcontrib>Lienau, R.M.</creatorcontrib><creatorcontrib>Kelly, K.W.</creatorcontrib><creatorcontrib>Hensley, D.</creatorcontrib><creatorcontrib>Desta, Y.</creatorcontrib><creatorcontrib>Zhong-Geng Ling</creatorcontrib><title>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (>4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.</description><subject>Alignment</subject><subject>alignment X-ray lithography</subject><subject>Circuits</subject><subject>Dispersion</subject><subject>electrodeposition</subject><subject>etching</subject><subject>Fabrication</subject><subject>Ferromagnetism</subject><subject>Gold</subject><subject>HARM</subject><subject>Intermetallics</subject><subject>LIGA</subject><subject>Masks</subject><subject>Microstructure</subject><subject>multilevel ferromagnetic structures</subject><subject>Nickel base alloys</subject><subject>NiFe</subject><subject>Polymethyl methacrylate</subject><subject>Polymethyl methacrylates</subject><subject>Resists</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sputter etching</subject><subject>X-ray lithography</subject><subject>X-ray mask</subject><subject>X-rays</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c9LwzAUB_AiCur0DxAvxYN46XyvSdP0KLL5gw0P6rmk6esWaZuZdAP_ezMnCB7EU97h876Q942iM4QxIhTXj_PJ_HmcAvCxZAVjxV50hAXHBDCT-2GGLE9yzPLD6Nj7NwDkXIqjaDZVlTNaDcb2sW3izva2NcPS6Lhbt4NpaUNtvDSLZaL8ivSQuK2NG3LOdmrR0xBoTRujyZ9EB41qPZ1-v6PodTp5ub1PZk93D7c3s0QzmQ8JrxhhVVc5T9MGJDHZ1LxWRSqYZBIlkKZKV6kUkFdKk9B1pgkJ0gyEaCo2ii53uStn39fkh7IzXlPbqp7s2pepDDcRQv4DhjuAzAO8-hMiYCEywWFLL37RN7t2ffhvWaSQCZQoAsId0s5676gpV850yn2EpHJbWPlVWLktrNwVFnbOdzuGiH48R1GExE9Hq5Hy</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Tao Wang</creator><creator>McCandless, A.B.</creator><creator>Lienau, R.M.</creator><creator>Kelly, K.W.</creator><creator>Hensley, D.</creator><creator>Desta, Y.</creator><creator>Zhong-Geng Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20050401</creationdate><title>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</title><author>Tao Wang ; McCandless, A.B. ; Lienau, R.M. ; Kelly, K.W. ; Hensley, D. ; Desta, Y. ; Zhong-Geng Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alignment</topic><topic>alignment X-ray lithography</topic><topic>Circuits</topic><topic>Dispersion</topic><topic>electrodeposition</topic><topic>etching</topic><topic>Fabrication</topic><topic>Ferromagnetism</topic><topic>Gold</topic><topic>HARM</topic><topic>Intermetallics</topic><topic>LIGA</topic><topic>Masks</topic><topic>Microstructure</topic><topic>multilevel ferromagnetic structures</topic><topic>Nickel base alloys</topic><topic>NiFe</topic><topic>Polymethyl methacrylate</topic><topic>Polymethyl methacrylates</topic><topic>Resists</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sputter etching</topic><topic>X-ray lithography</topic><topic>X-ray mask</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>McCandless, A.B.</creatorcontrib><creatorcontrib>Lienau, R.M.</creatorcontrib><creatorcontrib>Kelly, K.W.</creatorcontrib><creatorcontrib>Hensley, D.</creatorcontrib><creatorcontrib>Desta, Y.</creatorcontrib><creatorcontrib>Zhong-Geng Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao Wang</au><au>McCandless, A.B.</au><au>Lienau, R.M.</au><au>Kelly, K.W.</au><au>Hensley, D.</au><au>Desta, Y.</au><au>Zhong-Geng Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>2</issue><spage>400</spage><epage>409</epage><pages>400-409</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (>4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2004.839339</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2005-04, Vol.14 (2), p.400-409 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2004_839339 |
source | IEEE Electronic Library (IEL) |
subjects | Alignment alignment X-ray lithography Circuits Dispersion electrodeposition etching Fabrication Ferromagnetism Gold HARM Intermetallics LIGA Masks Microstructure multilevel ferromagnetic structures Nickel base alloys NiFe Polymethyl methacrylate Polymethyl methacrylates Resists Semiconductors Silicon Spectroscopy Spectrum analysis Sputter etching X-ray lithography X-ray mask X-rays |
title | Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20monolithic%20multilevel%20high-aspect-ratio%20ferromagnetic%20devices&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Tao%20Wang&rft.date=2005-04-01&rft.volume=14&rft.issue=2&rft.spage=400&rft.epage=409&rft.pages=400-409&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2004.839339&rft_dat=%3Cproquest_RIE%3E28014087%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920561816&rft_id=info:pmid/&rft_ieee_id=1416916&rfr_iscdi=true |