Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices

This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2005-04, Vol.14 (2), p.400-409
Hauptverfasser: Tao Wang, McCandless, A.B., Lienau, R.M., Kelly, K.W., Hensley, D., Desta, Y., Zhong-Geng Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 2
container_start_page 400
container_title Journal of microelectromechanical systems
container_volume 14
creator Tao Wang
McCandless, A.B.
Lienau, R.M.
Kelly, K.W.
Hensley, D.
Desta, Y.
Zhong-Geng Ling
description This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (>4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.
doi_str_mv 10.1109/JMEMS.2004.839339
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2004_839339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1416916</ieee_id><sourcerecordid>28014087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AiCur0DxAvxYN46XyvSdP0KLL5gw0P6rmk6esWaZuZdAP_ezMnCB7EU97h876Q942iM4QxIhTXj_PJ_HmcAvCxZAVjxV50hAXHBDCT-2GGLE9yzPLD6Nj7NwDkXIqjaDZVlTNaDcb2sW3izva2NcPS6Lhbt4NpaUNtvDSLZaL8ivSQuK2NG3LOdmrR0xBoTRujyZ9EB41qPZ1-v6PodTp5ub1PZk93D7c3s0QzmQ8JrxhhVVc5T9MGJDHZ1LxWRSqYZBIlkKZKV6kUkFdKk9B1pgkJ0gyEaCo2ii53uStn39fkh7IzXlPbqp7s2pepDDcRQv4DhjuAzAO8-hMiYCEywWFLL37RN7t2ffhvWaSQCZQoAsId0s5676gpV850yn2EpHJbWPlVWLktrNwVFnbOdzuGiH48R1GExE9Hq5Hy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920561816</pqid></control><display><type>article</type><title>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</title><source>IEEE Electronic Library (IEL)</source><creator>Tao Wang ; McCandless, A.B. ; Lienau, R.M. ; Kelly, K.W. ; Hensley, D. ; Desta, Y. ; Zhong-Geng Ling</creator><creatorcontrib>Tao Wang ; McCandless, A.B. ; Lienau, R.M. ; Kelly, K.W. ; Hensley, D. ; Desta, Y. ; Zhong-Geng Ling</creatorcontrib><description>This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (&gt;4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2004.839339</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; alignment X-ray lithography ; Circuits ; Dispersion ; electrodeposition ; etching ; Fabrication ; Ferromagnetism ; Gold ; HARM ; Intermetallics ; LIGA ; Masks ; Microstructure ; multilevel ferromagnetic structures ; Nickel base alloys ; NiFe ; Polymethyl methacrylate ; Polymethyl methacrylates ; Resists ; Semiconductors ; Silicon ; Spectroscopy ; Spectrum analysis ; Sputter etching ; X-ray lithography ; X-ray mask ; X-rays</subject><ispartof>Journal of microelectromechanical systems, 2005-04, Vol.14 (2), p.400-409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</citedby><cites>FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1416916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1416916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>McCandless, A.B.</creatorcontrib><creatorcontrib>Lienau, R.M.</creatorcontrib><creatorcontrib>Kelly, K.W.</creatorcontrib><creatorcontrib>Hensley, D.</creatorcontrib><creatorcontrib>Desta, Y.</creatorcontrib><creatorcontrib>Zhong-Geng Ling</creatorcontrib><title>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (&gt;4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.</description><subject>Alignment</subject><subject>alignment X-ray lithography</subject><subject>Circuits</subject><subject>Dispersion</subject><subject>electrodeposition</subject><subject>etching</subject><subject>Fabrication</subject><subject>Ferromagnetism</subject><subject>Gold</subject><subject>HARM</subject><subject>Intermetallics</subject><subject>LIGA</subject><subject>Masks</subject><subject>Microstructure</subject><subject>multilevel ferromagnetic structures</subject><subject>Nickel base alloys</subject><subject>NiFe</subject><subject>Polymethyl methacrylate</subject><subject>Polymethyl methacrylates</subject><subject>Resists</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sputter etching</subject><subject>X-ray lithography</subject><subject>X-ray mask</subject><subject>X-rays</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c9LwzAUB_AiCur0DxAvxYN46XyvSdP0KLL5gw0P6rmk6esWaZuZdAP_ezMnCB7EU97h876Q942iM4QxIhTXj_PJ_HmcAvCxZAVjxV50hAXHBDCT-2GGLE9yzPLD6Nj7NwDkXIqjaDZVlTNaDcb2sW3izva2NcPS6Lhbt4NpaUNtvDSLZaL8ivSQuK2NG3LOdmrR0xBoTRujyZ9EB41qPZ1-v6PodTp5ub1PZk93D7c3s0QzmQ8JrxhhVVc5T9MGJDHZ1LxWRSqYZBIlkKZKV6kUkFdKk9B1pgkJ0gyEaCo2ii53uStn39fkh7IzXlPbqp7s2pepDDcRQv4DhjuAzAO8-hMiYCEywWFLL37RN7t2ffhvWaSQCZQoAsId0s5676gpV850yn2EpHJbWPlVWLktrNwVFnbOdzuGiH48R1GExE9Hq5Hy</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Tao Wang</creator><creator>McCandless, A.B.</creator><creator>Lienau, R.M.</creator><creator>Kelly, K.W.</creator><creator>Hensley, D.</creator><creator>Desta, Y.</creator><creator>Zhong-Geng Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20050401</creationdate><title>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</title><author>Tao Wang ; McCandless, A.B. ; Lienau, R.M. ; Kelly, K.W. ; Hensley, D. ; Desta, Y. ; Zhong-Geng Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4b3e1bdb7422f08e38fd4da9263838180ecebcb28607bace6cd5ce1e025066fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alignment</topic><topic>alignment X-ray lithography</topic><topic>Circuits</topic><topic>Dispersion</topic><topic>electrodeposition</topic><topic>etching</topic><topic>Fabrication</topic><topic>Ferromagnetism</topic><topic>Gold</topic><topic>HARM</topic><topic>Intermetallics</topic><topic>LIGA</topic><topic>Masks</topic><topic>Microstructure</topic><topic>multilevel ferromagnetic structures</topic><topic>Nickel base alloys</topic><topic>NiFe</topic><topic>Polymethyl methacrylate</topic><topic>Polymethyl methacrylates</topic><topic>Resists</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sputter etching</topic><topic>X-ray lithography</topic><topic>X-ray mask</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>McCandless, A.B.</creatorcontrib><creatorcontrib>Lienau, R.M.</creatorcontrib><creatorcontrib>Kelly, K.W.</creatorcontrib><creatorcontrib>Hensley, D.</creatorcontrib><creatorcontrib>Desta, Y.</creatorcontrib><creatorcontrib>Zhong-Geng Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao Wang</au><au>McCandless, A.B.</au><au>Lienau, R.M.</au><au>Kelly, K.W.</au><au>Hensley, D.</au><au>Desta, Y.</au><au>Zhong-Geng Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>2</issue><spage>400</spage><epage>409</epage><pages>400-409</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>This paper describes a process to fabricate monolithic multilevel high-aspect-ratio microstructures (HARMs) for ferromagnetic devices built on silicon wafers using aligned X-ray lithography in conjunction with electrodeposition. Two X-ray masks were fabricated, each consisting of gold (Au) absorber structures on a transparent polyimide membrane. One mask was used to print a polymethyl methacrylate (PMMA) resist layer. Then, a second PMMA layer was applied to the same wafer, and the second mask was used to pattern it. Transparent alignment windows in the second mask, combined with a piezoelectrically controlled X-ray aligner, allowed for high alignment accuracy between the two print patterns over large areas (&gt;4 inch in diameter). Au circuits were electroplated into first PMMA layer from a sulfite-based electrolyte, and nickel-iron (NiFe) ferromagnetic HARMs were formed in second PMMA resist from a sulfate-based bath. The deposition resulted in well-defined NiFe structures with aspect-ratios up to 67:1 as well as smooth sidewalls and top surfaces. Chemical composition measurements with energy X-ray dispersive spectroscopy (EDS) and wavelength X-ray dispersive spectroscopy (WDS) showed that Fe content increased during the electrodeposition process. To electrically isolate the NiFe posts and Au circuits, both wet chemical etching and sputter etching were explored to remove the exposed seed layer, and the latter approach completely removed the seed layers without damaging the electroplated features.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2004.839339</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2005-04, Vol.14 (2), p.400-409
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2004_839339
source IEEE Electronic Library (IEL)
subjects Alignment
alignment X-ray lithography
Circuits
Dispersion
electrodeposition
etching
Fabrication
Ferromagnetism
Gold
HARM
Intermetallics
LIGA
Masks
Microstructure
multilevel ferromagnetic structures
Nickel base alloys
NiFe
Polymethyl methacrylate
Polymethyl methacrylates
Resists
Semiconductors
Silicon
Spectroscopy
Spectrum analysis
Sputter etching
X-ray lithography
X-ray mask
X-rays
title Fabrication of monolithic multilevel high-aspect-ratio ferromagnetic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20monolithic%20multilevel%20high-aspect-ratio%20ferromagnetic%20devices&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Tao%20Wang&rft.date=2005-04-01&rft.volume=14&rft.issue=2&rft.spage=400&rft.epage=409&rft.pages=400-409&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2004.839339&rft_dat=%3Cproquest_RIE%3E28014087%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920561816&rft_id=info:pmid/&rft_ieee_id=1416916&rfr_iscdi=true