Mechanical characterization and design of flexible silicon microstructures
A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (a...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2004-06, Vol.13 (3), p.452-464 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 3 |
container_start_page | 452 |
container_title | Journal of microelectromechanical systems |
container_volume | 13 |
creator | Lisby, T. Nikles, S.A. Najafi, K. Hansen, O. Bouwstra, S. Branebjerg, J.A. |
description | A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%. |
doi_str_mv | 10.1109/JMEMS.2004.828744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2004_828744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1303623</ieee_id><sourcerecordid>2583187161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK7-APFSPOip60yTpslRZP1YXDyo55BNJ5ql265JC-qvt-sKggdP88I878DwJMkxwgQR1MVsPp0_TnIAPpG5LDnfSUaoOGaAhdwdMhRlVmJR7icHMS4BkHMpRslsTvbVNN6aOh1CMLaj4D9N59smNU2VVhT9S5O2LnU1vftFTWn0tbfDeuVtaGMXetv1geJhsudMHenoZ46T5-vp09Vtdv9wc3d1eZ9ZjqrLOIN8YaRzpSpBFVKVonIL6RjmzHJZkGS5UA5txY2hcsFMVVUCDWHFmHXAxsn59u46tG89xU6vfLRU16ahto9aAQqBCsVAnv1L5pIDKLEBT_-Ay7YPzfCFVjnIAVNygHALbb6OgZxeB78y4UMj6I0E_S1BbyTorYShc7LteCL65RkwkTP2BXD6g3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920884098</pqid></control><display><type>article</type><title>Mechanical characterization and design of flexible silicon microstructures</title><source>IEEE Electronic Library (IEL)</source><creator>Lisby, T. ; Nikles, S.A. ; Najafi, K. ; Hansen, O. ; Bouwstra, S. ; Branebjerg, J.A.</creator><creatorcontrib>Lisby, T. ; Nikles, S.A. ; Najafi, K. ; Hansen, O. ; Bouwstra, S. ; Branebjerg, J.A.</creatorcontrib><description>A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2004.828744</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Beams (structural) ; Cables ; Capacitive sensors ; Design engineering ; Design optimization ; Finite element methods ; Mathematical models ; Mechanical cables ; Microstructure ; Packaging ; Probes ; Ribbons ; Robustness ; Silicon ; Strain ; Testing ; Twisting</subject><ispartof>Journal of microelectromechanical systems, 2004-06, Vol.13 (3), p.452-464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</citedby><cites>FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1303623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1303623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lisby, T.</creatorcontrib><creatorcontrib>Nikles, S.A.</creatorcontrib><creatorcontrib>Najafi, K.</creatorcontrib><creatorcontrib>Hansen, O.</creatorcontrib><creatorcontrib>Bouwstra, S.</creatorcontrib><creatorcontrib>Branebjerg, J.A.</creatorcontrib><title>Mechanical characterization and design of flexible silicon microstructures</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.</description><subject>Beams (structural)</subject><subject>Cables</subject><subject>Capacitive sensors</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Finite element methods</subject><subject>Mathematical models</subject><subject>Mechanical cables</subject><subject>Microstructure</subject><subject>Packaging</subject><subject>Probes</subject><subject>Ribbons</subject><subject>Robustness</subject><subject>Silicon</subject><subject>Strain</subject><subject>Testing</subject><subject>Twisting</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhosouK7-APFSPOip60yTpslRZP1YXDyo55BNJ5ql265JC-qvt-sKggdP88I878DwJMkxwgQR1MVsPp0_TnIAPpG5LDnfSUaoOGaAhdwdMhRlVmJR7icHMS4BkHMpRslsTvbVNN6aOh1CMLaj4D9N59smNU2VVhT9S5O2LnU1vftFTWn0tbfDeuVtaGMXetv1geJhsudMHenoZ46T5-vp09Vtdv9wc3d1eZ9ZjqrLOIN8YaRzpSpBFVKVonIL6RjmzHJZkGS5UA5txY2hcsFMVVUCDWHFmHXAxsn59u46tG89xU6vfLRU16ahto9aAQqBCsVAnv1L5pIDKLEBT_-Ay7YPzfCFVjnIAVNygHALbb6OgZxeB78y4UMj6I0E_S1BbyTorYShc7LteCL65RkwkTP2BXD6g3w</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Lisby, T.</creator><creator>Nikles, S.A.</creator><creator>Najafi, K.</creator><creator>Hansen, O.</creator><creator>Bouwstra, S.</creator><creator>Branebjerg, J.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040601</creationdate><title>Mechanical characterization and design of flexible silicon microstructures</title><author>Lisby, T. ; Nikles, S.A. ; Najafi, K. ; Hansen, O. ; Bouwstra, S. ; Branebjerg, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Beams (structural)</topic><topic>Cables</topic><topic>Capacitive sensors</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Finite element methods</topic><topic>Mathematical models</topic><topic>Mechanical cables</topic><topic>Microstructure</topic><topic>Packaging</topic><topic>Probes</topic><topic>Ribbons</topic><topic>Robustness</topic><topic>Silicon</topic><topic>Strain</topic><topic>Testing</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisby, T.</creatorcontrib><creatorcontrib>Nikles, S.A.</creatorcontrib><creatorcontrib>Najafi, K.</creatorcontrib><creatorcontrib>Hansen, O.</creatorcontrib><creatorcontrib>Bouwstra, S.</creatorcontrib><creatorcontrib>Branebjerg, J.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lisby, T.</au><au>Nikles, S.A.</au><au>Najafi, K.</au><au>Hansen, O.</au><au>Bouwstra, S.</au><au>Branebjerg, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization and design of flexible silicon microstructures</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>13</volume><issue>3</issue><spage>452</spage><epage>464</epage><pages>452-464</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2004.828744</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2004-06, Vol.13 (3), p.452-464 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2004_828744 |
source | IEEE Electronic Library (IEL) |
subjects | Beams (structural) Cables Capacitive sensors Design engineering Design optimization Finite element methods Mathematical models Mechanical cables Microstructure Packaging Probes Ribbons Robustness Silicon Strain Testing Twisting |
title | Mechanical characterization and design of flexible silicon microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20and%20design%20of%20flexible%20silicon%20microstructures&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Lisby,%20T.&rft.date=2004-06-01&rft.volume=13&rft.issue=3&rft.spage=452&rft.epage=464&rft.pages=452-464&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2004.828744&rft_dat=%3Cproquest_RIE%3E2583187161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920884098&rft_id=info:pmid/&rft_ieee_id=1303623&rfr_iscdi=true |