Mechanical characterization and design of flexible silicon microstructures

A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2004-06, Vol.13 (3), p.452-464
Hauptverfasser: Lisby, T., Nikles, S.A., Najafi, K., Hansen, O., Bouwstra, S., Branebjerg, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 3
container_start_page 452
container_title Journal of microelectromechanical systems
container_volume 13
creator Lisby, T.
Nikles, S.A.
Najafi, K.
Hansen, O.
Bouwstra, S.
Branebjerg, J.A.
description A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.
doi_str_mv 10.1109/JMEMS.2004.828744
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2004_828744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1303623</ieee_id><sourcerecordid>2583187161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK7-APFSPOip60yTpslRZP1YXDyo55BNJ5ql265JC-qvt-sKggdP88I878DwJMkxwgQR1MVsPp0_TnIAPpG5LDnfSUaoOGaAhdwdMhRlVmJR7icHMS4BkHMpRslsTvbVNN6aOh1CMLaj4D9N59smNU2VVhT9S5O2LnU1vftFTWn0tbfDeuVtaGMXetv1geJhsudMHenoZ46T5-vp09Vtdv9wc3d1eZ9ZjqrLOIN8YaRzpSpBFVKVonIL6RjmzHJZkGS5UA5txY2hcsFMVVUCDWHFmHXAxsn59u46tG89xU6vfLRU16ahto9aAQqBCsVAnv1L5pIDKLEBT_-Ay7YPzfCFVjnIAVNygHALbb6OgZxeB78y4UMj6I0E_S1BbyTorYShc7LteCL65RkwkTP2BXD6g3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920884098</pqid></control><display><type>article</type><title>Mechanical characterization and design of flexible silicon microstructures</title><source>IEEE Electronic Library (IEL)</source><creator>Lisby, T. ; Nikles, S.A. ; Najafi, K. ; Hansen, O. ; Bouwstra, S. ; Branebjerg, J.A.</creator><creatorcontrib>Lisby, T. ; Nikles, S.A. ; Najafi, K. ; Hansen, O. ; Bouwstra, S. ; Branebjerg, J.A.</creatorcontrib><description>A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2004.828744</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Beams (structural) ; Cables ; Capacitive sensors ; Design engineering ; Design optimization ; Finite element methods ; Mathematical models ; Mechanical cables ; Microstructure ; Packaging ; Probes ; Ribbons ; Robustness ; Silicon ; Strain ; Testing ; Twisting</subject><ispartof>Journal of microelectromechanical systems, 2004-06, Vol.13 (3), p.452-464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</citedby><cites>FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1303623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1303623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lisby, T.</creatorcontrib><creatorcontrib>Nikles, S.A.</creatorcontrib><creatorcontrib>Najafi, K.</creatorcontrib><creatorcontrib>Hansen, O.</creatorcontrib><creatorcontrib>Bouwstra, S.</creatorcontrib><creatorcontrib>Branebjerg, J.A.</creatorcontrib><title>Mechanical characterization and design of flexible silicon microstructures</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.</description><subject>Beams (structural)</subject><subject>Cables</subject><subject>Capacitive sensors</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Finite element methods</subject><subject>Mathematical models</subject><subject>Mechanical cables</subject><subject>Microstructure</subject><subject>Packaging</subject><subject>Probes</subject><subject>Ribbons</subject><subject>Robustness</subject><subject>Silicon</subject><subject>Strain</subject><subject>Testing</subject><subject>Twisting</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhosouK7-APFSPOip60yTpslRZP1YXDyo55BNJ5ql265JC-qvt-sKggdP88I878DwJMkxwgQR1MVsPp0_TnIAPpG5LDnfSUaoOGaAhdwdMhRlVmJR7icHMS4BkHMpRslsTvbVNN6aOh1CMLaj4D9N59smNU2VVhT9S5O2LnU1vftFTWn0tbfDeuVtaGMXetv1geJhsudMHenoZ46T5-vp09Vtdv9wc3d1eZ9ZjqrLOIN8YaRzpSpBFVKVonIL6RjmzHJZkGS5UA5txY2hcsFMVVUCDWHFmHXAxsn59u46tG89xU6vfLRU16ahto9aAQqBCsVAnv1L5pIDKLEBT_-Ay7YPzfCFVjnIAVNygHALbb6OgZxeB78y4UMj6I0E_S1BbyTorYShc7LteCL65RkwkTP2BXD6g3w</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Lisby, T.</creator><creator>Nikles, S.A.</creator><creator>Najafi, K.</creator><creator>Hansen, O.</creator><creator>Bouwstra, S.</creator><creator>Branebjerg, J.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040601</creationdate><title>Mechanical characterization and design of flexible silicon microstructures</title><author>Lisby, T. ; Nikles, S.A. ; Najafi, K. ; Hansen, O. ; Bouwstra, S. ; Branebjerg, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4302ba8ff7970958976dfb8f3123c485e83269f1cd4aae7b3addd61ae1d33cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Beams (structural)</topic><topic>Cables</topic><topic>Capacitive sensors</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Finite element methods</topic><topic>Mathematical models</topic><topic>Mechanical cables</topic><topic>Microstructure</topic><topic>Packaging</topic><topic>Probes</topic><topic>Ribbons</topic><topic>Robustness</topic><topic>Silicon</topic><topic>Strain</topic><topic>Testing</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisby, T.</creatorcontrib><creatorcontrib>Nikles, S.A.</creatorcontrib><creatorcontrib>Najafi, K.</creatorcontrib><creatorcontrib>Hansen, O.</creatorcontrib><creatorcontrib>Bouwstra, S.</creatorcontrib><creatorcontrib>Branebjerg, J.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lisby, T.</au><au>Nikles, S.A.</au><au>Najafi, K.</au><au>Hansen, O.</au><au>Bouwstra, S.</au><au>Branebjerg, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization and design of flexible silicon microstructures</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2004-06-01</date><risdate>2004</risdate><volume>13</volume><issue>3</issue><spage>452</spage><epage>464</epage><pages>452-464</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-/spl mu/m-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-/spl mu/m wide and 2-mm long could be twisted up to 712/spl deg/. It also was seen that structures having multiple 20-/spl mu/m-wide beams were generally more robust than those with a single 500-/spl mu/m-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2004.828744</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2004-06, Vol.13 (3), p.452-464
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2004_828744
source IEEE Electronic Library (IEL)
subjects Beams (structural)
Cables
Capacitive sensors
Design engineering
Design optimization
Finite element methods
Mathematical models
Mechanical cables
Microstructure
Packaging
Probes
Ribbons
Robustness
Silicon
Strain
Testing
Twisting
title Mechanical characterization and design of flexible silicon microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20and%20design%20of%20flexible%20silicon%20microstructures&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Lisby,%20T.&rft.date=2004-06-01&rft.volume=13&rft.issue=3&rft.spage=452&rft.epage=464&rft.pages=452-464&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2004.828744&rft_dat=%3Cproquest_RIE%3E2583187161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920884098&rft_id=info:pmid/&rft_ieee_id=1303623&rfr_iscdi=true