Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation
The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar me...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2004-02, Vol.13 (1), p.31-40 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Journal of microelectromechanical systems |
container_volume | 13 |
creator | Peles, Y. Srikar, V.T. Harrison, T.S. Protz, C. Mracek, A. Spearing, S.M. |
description | The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested. |
doi_str_mv | 10.1109/JMEMS.2003.823223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2003_823223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1269729</ieee_id><sourcerecordid>2583185121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqXwAxCXiAOcsozH30dUtXyoFYeWsxWc8dbtbhzspBL_Hu8GCYkDPc3Mq-cdaeZtmtcMNoyB_fD16vzqeoMAfGOQI_InzQmzgnXApHlae5C600zq582LUu4AmBBGnTTxYrfEIfp26v19v43jtk2h3UefE411pLYfh3XOyd_T3A70ED2VNqTc3sbtbTdlKmXJK3lUZtpPlPv5IKZjF9P4snkW-l2hV3_qafP94vzm7HN3-e3Tl7OPl50XqOdOaA-S0EuuBqMtF0ABDBsMBNKopCVJxNAGwblS1hriYmAGf_QheO0VP23er3unnH4uVGa3j8XTbtePlJbiLDClmJKmku_-S6JFLrVgj4MGTX0nVvDtP-BdWvJYz3UWwVhA0BViK1R_Wkqm4KYc933-5Ri4Q5juGKY7hOnWMKvnzeqJRPSXR2U1Wv4bHuObSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920890207</pqid></control><display><type>article</type><title>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</title><source>IEEE Electronic Library (IEL)</source><creator>Peles, Y. ; Srikar, V.T. ; Harrison, T.S. ; Protz, C. ; Mracek, A. ; Spearing, S.M.</creator><creatorcontrib>Peles, Y. ; Srikar, V.T. ; Harrison, T.S. ; Protz, C. ; Mracek, A. ; Spearing, S.M.</creatorcontrib><description>The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2003.823223</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Devices ; Fabrication ; Ferrous alloys ; Fluidic microsystems ; Fluidics ; Fracture mechanics ; Glass ; Microelectromechanical devices ; Microfluidics ; Nickel base alloys ; Packaging ; Probability ; Seals ; Silicon ; Superalloys ; Temperature distribution ; Tubes ; Wetting</subject><ispartof>Journal of microelectromechanical systems, 2004-02, Vol.13 (1), p.31-40</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</citedby><cites>FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1269729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1269729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peles, Y.</creatorcontrib><creatorcontrib>Srikar, V.T.</creatorcontrib><creatorcontrib>Harrison, T.S.</creatorcontrib><creatorcontrib>Protz, C.</creatorcontrib><creatorcontrib>Mracek, A.</creatorcontrib><creatorcontrib>Spearing, S.M.</creatorcontrib><title>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.</description><subject>Devices</subject><subject>Fabrication</subject><subject>Ferrous alloys</subject><subject>Fluidic microsystems</subject><subject>Fluidics</subject><subject>Fracture mechanics</subject><subject>Glass</subject><subject>Microelectromechanical devices</subject><subject>Microfluidics</subject><subject>Nickel base alloys</subject><subject>Packaging</subject><subject>Probability</subject><subject>Seals</subject><subject>Silicon</subject><subject>Superalloys</subject><subject>Temperature distribution</subject><subject>Tubes</subject><subject>Wetting</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1v1DAQhiMEEqXwAxCXiAOcsozH30dUtXyoFYeWsxWc8dbtbhzspBL_Hu8GCYkDPc3Mq-cdaeZtmtcMNoyB_fD16vzqeoMAfGOQI_InzQmzgnXApHlae5C600zq582LUu4AmBBGnTTxYrfEIfp26v19v43jtk2h3UefE411pLYfh3XOyd_T3A70ED2VNqTc3sbtbTdlKmXJK3lUZtpPlPv5IKZjF9P4snkW-l2hV3_qafP94vzm7HN3-e3Tl7OPl50XqOdOaA-S0EuuBqMtF0ABDBsMBNKopCVJxNAGwblS1hriYmAGf_QheO0VP23er3unnH4uVGa3j8XTbtePlJbiLDClmJKmku_-S6JFLrVgj4MGTX0nVvDtP-BdWvJYz3UWwVhA0BViK1R_Wkqm4KYc933-5Ri4Q5juGKY7hOnWMKvnzeqJRPSXR2U1Wv4bHuObSQ</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Peles, Y.</creator><creator>Srikar, V.T.</creator><creator>Harrison, T.S.</creator><creator>Protz, C.</creator><creator>Mracek, A.</creator><creator>Spearing, S.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>KR7</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20040201</creationdate><title>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</title><author>Peles, Y. ; Srikar, V.T. ; Harrison, T.S. ; Protz, C. ; Mracek, A. ; Spearing, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Devices</topic><topic>Fabrication</topic><topic>Ferrous alloys</topic><topic>Fluidic microsystems</topic><topic>Fluidics</topic><topic>Fracture mechanics</topic><topic>Glass</topic><topic>Microelectromechanical devices</topic><topic>Microfluidics</topic><topic>Nickel base alloys</topic><topic>Packaging</topic><topic>Probability</topic><topic>Seals</topic><topic>Silicon</topic><topic>Superalloys</topic><topic>Temperature distribution</topic><topic>Tubes</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peles, Y.</creatorcontrib><creatorcontrib>Srikar, V.T.</creatorcontrib><creatorcontrib>Harrison, T.S.</creatorcontrib><creatorcontrib>Protz, C.</creatorcontrib><creatorcontrib>Mracek, A.</creatorcontrib><creatorcontrib>Spearing, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Civil Engineering Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peles, Y.</au><au>Srikar, V.T.</au><au>Harrison, T.S.</au><au>Protz, C.</au><au>Mracek, A.</au><au>Spearing, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>13</volume><issue>1</issue><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2003.823223</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2004-02, Vol.13 (1), p.31-40 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMEMS_2003_823223 |
source | IEEE Electronic Library (IEL) |
subjects | Devices Fabrication Ferrous alloys Fluidic microsystems Fluidics Fracture mechanics Glass Microelectromechanical devices Microfluidics Nickel base alloys Packaging Probability Seals Silicon Superalloys Temperature distribution Tubes Wetting |
title | Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T08%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluidic%20packaging%20of%20microengine%20and%20microrocket%20devices%20for%20high-pressure%20and%20high-temperature%20operation&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Peles,%20Y.&rft.date=2004-02-01&rft.volume=13&rft.issue=1&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2003.823223&rft_dat=%3Cproquest_RIE%3E2583185121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920890207&rft_id=info:pmid/&rft_ieee_id=1269729&rfr_iscdi=true |