Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation

The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2004-02, Vol.13 (1), p.31-40
Hauptverfasser: Peles, Y., Srikar, V.T., Harrison, T.S., Protz, C., Mracek, A., Spearing, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 31
container_title Journal of microelectromechanical systems
container_volume 13
creator Peles, Y.
Srikar, V.T.
Harrison, T.S.
Protz, C.
Mracek, A.
Spearing, S.M.
description The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.
doi_str_mv 10.1109/JMEMS.2003.823223
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMEMS_2003_823223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1269729</ieee_id><sourcerecordid>2583185121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqXwAxCXiAOcsozH30dUtXyoFYeWsxWc8dbtbhzspBL_Hu8GCYkDPc3Mq-cdaeZtmtcMNoyB_fD16vzqeoMAfGOQI_InzQmzgnXApHlae5C600zq582LUu4AmBBGnTTxYrfEIfp26v19v43jtk2h3UefE411pLYfh3XOyd_T3A70ED2VNqTc3sbtbTdlKmXJK3lUZtpPlPv5IKZjF9P4snkW-l2hV3_qafP94vzm7HN3-e3Tl7OPl50XqOdOaA-S0EuuBqMtF0ABDBsMBNKopCVJxNAGwblS1hriYmAGf_QheO0VP23er3unnH4uVGa3j8XTbtePlJbiLDClmJKmku_-S6JFLrVgj4MGTX0nVvDtP-BdWvJYz3UWwVhA0BViK1R_Wkqm4KYc933-5Ri4Q5juGKY7hOnWMKvnzeqJRPSXR2U1Wv4bHuObSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920890207</pqid></control><display><type>article</type><title>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</title><source>IEEE Electronic Library (IEL)</source><creator>Peles, Y. ; Srikar, V.T. ; Harrison, T.S. ; Protz, C. ; Mracek, A. ; Spearing, S.M.</creator><creatorcontrib>Peles, Y. ; Srikar, V.T. ; Harrison, T.S. ; Protz, C. ; Mracek, A. ; Spearing, S.M.</creatorcontrib><description>The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2003.823223</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Devices ; Fabrication ; Ferrous alloys ; Fluidic microsystems ; Fluidics ; Fracture mechanics ; Glass ; Microelectromechanical devices ; Microfluidics ; Nickel base alloys ; Packaging ; Probability ; Seals ; Silicon ; Superalloys ; Temperature distribution ; Tubes ; Wetting</subject><ispartof>Journal of microelectromechanical systems, 2004-02, Vol.13 (1), p.31-40</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</citedby><cites>FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1269729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1269729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peles, Y.</creatorcontrib><creatorcontrib>Srikar, V.T.</creatorcontrib><creatorcontrib>Harrison, T.S.</creatorcontrib><creatorcontrib>Protz, C.</creatorcontrib><creatorcontrib>Mracek, A.</creatorcontrib><creatorcontrib>Spearing, S.M.</creatorcontrib><title>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.</description><subject>Devices</subject><subject>Fabrication</subject><subject>Ferrous alloys</subject><subject>Fluidic microsystems</subject><subject>Fluidics</subject><subject>Fracture mechanics</subject><subject>Glass</subject><subject>Microelectromechanical devices</subject><subject>Microfluidics</subject><subject>Nickel base alloys</subject><subject>Packaging</subject><subject>Probability</subject><subject>Seals</subject><subject>Silicon</subject><subject>Superalloys</subject><subject>Temperature distribution</subject><subject>Tubes</subject><subject>Wetting</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1v1DAQhiMEEqXwAxCXiAOcsozH30dUtXyoFYeWsxWc8dbtbhzspBL_Hu8GCYkDPc3Mq-cdaeZtmtcMNoyB_fD16vzqeoMAfGOQI_InzQmzgnXApHlae5C600zq582LUu4AmBBGnTTxYrfEIfp26v19v43jtk2h3UefE411pLYfh3XOyd_T3A70ED2VNqTc3sbtbTdlKmXJK3lUZtpPlPv5IKZjF9P4snkW-l2hV3_qafP94vzm7HN3-e3Tl7OPl50XqOdOaA-S0EuuBqMtF0ABDBsMBNKopCVJxNAGwblS1hriYmAGf_QheO0VP23er3unnH4uVGa3j8XTbtePlJbiLDClmJKmku_-S6JFLrVgj4MGTX0nVvDtP-BdWvJYz3UWwVhA0BViK1R_Wkqm4KYc933-5Ri4Q5juGKY7hOnWMKvnzeqJRPSXR2U1Wv4bHuObSQ</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Peles, Y.</creator><creator>Srikar, V.T.</creator><creator>Harrison, T.S.</creator><creator>Protz, C.</creator><creator>Mracek, A.</creator><creator>Spearing, S.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>KR7</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20040201</creationdate><title>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</title><author>Peles, Y. ; Srikar, V.T. ; Harrison, T.S. ; Protz, C. ; Mracek, A. ; Spearing, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-47c05e2c536d879340ef081d80fe72659e5ee129f43366998e34d182baffc7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Devices</topic><topic>Fabrication</topic><topic>Ferrous alloys</topic><topic>Fluidic microsystems</topic><topic>Fluidics</topic><topic>Fracture mechanics</topic><topic>Glass</topic><topic>Microelectromechanical devices</topic><topic>Microfluidics</topic><topic>Nickel base alloys</topic><topic>Packaging</topic><topic>Probability</topic><topic>Seals</topic><topic>Silicon</topic><topic>Superalloys</topic><topic>Temperature distribution</topic><topic>Tubes</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peles, Y.</creatorcontrib><creatorcontrib>Srikar, V.T.</creatorcontrib><creatorcontrib>Harrison, T.S.</creatorcontrib><creatorcontrib>Protz, C.</creatorcontrib><creatorcontrib>Mracek, A.</creatorcontrib><creatorcontrib>Spearing, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Civil Engineering Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peles, Y.</au><au>Srikar, V.T.</au><au>Harrison, T.S.</au><au>Protz, C.</au><au>Mracek, A.</au><au>Spearing, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>13</volume><issue>1</issue><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>The fluidic packaging of Power MEMS devices such as the MIT microengine and microrocket requires the fabrication of hermetic seals capable of withstanding temperature in the range 20-600/spl deg/C and pressures in the range 100-300 atm. We describe an approach to such packaging by attaching Kovar metal tubes to a silicon device using glass seal technology. Failure due to fracture of the seals is a significant reliability concern in the baseline process: microscopy revealed a large number of voids in the glass, pre-cracks in the glass and silicon, and poor wetting of the glass to silicon. The effects of various processing and materials parameters on these phenomena were examined. A robust procedure, based on the use of metal-coated silicon substrates, was developed to ensure good wetting. The bending strength of single-tube specimens was determined at several temperatures. The dominant failure mode changed from fracture at room temperature to yielding of the glass and Kovar at 600/spl deg/C. The strength in tension at room temperature was analyzed using Weibull statistics; these results indicate a probability of survival of 0.99 at an operational pressure of 125 atm at room temperature for single tubes and a corresponding probability of 0.9 for a packaged device with 11 joints. The residual stresses were analyzed using the method of finite elements and recommendations for the improvement of packaging reliability are suggested.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2003.823223</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2004-02, Vol.13 (1), p.31-40
issn 1057-7157
1941-0158
language eng
recordid cdi_crossref_primary_10_1109_JMEMS_2003_823223
source IEEE Electronic Library (IEL)
subjects Devices
Fabrication
Ferrous alloys
Fluidic microsystems
Fluidics
Fracture mechanics
Glass
Microelectromechanical devices
Microfluidics
Nickel base alloys
Packaging
Probability
Seals
Silicon
Superalloys
Temperature distribution
Tubes
Wetting
title Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T08%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluidic%20packaging%20of%20microengine%20and%20microrocket%20devices%20for%20high-pressure%20and%20high-temperature%20operation&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Peles,%20Y.&rft.date=2004-02-01&rft.volume=13&rft.issue=1&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2003.823223&rft_dat=%3Cproquest_RIE%3E2583185121%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920890207&rft_id=info:pmid/&rft_ieee_id=1269729&rfr_iscdi=true