Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery
Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix deco...
Gespeichert in:
Veröffentlicht in: | IEEE journal on miniaturization for air and space systems 2024-09, Vol.5 (3), p.187-199 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 3 |
container_start_page | 187 |
container_title | IEEE journal on miniaturization for air and space systems |
container_volume | 5 |
creator | Gao, Bin Song, Anna Xu, Hanwen Zhang, Zenan Lian, Wenhui Yang, Lei |
description | Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, \ell _{1} -norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods. |
doi_str_mv | 10.1109/JMASS.2024.3406783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMASS_2024_3406783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540574</ieee_id><sourcerecordid>3096383492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c922-69b887fc0c808713b80a5d9c6e3b20f3b87a6e2b615e4eb99dffb7bb41a79d093</originalsourceid><addsrcrecordid>eNpNkMtOAjEUhhujiQR5AeNiEteDZ9pOL8sJokAgJoBum3amA4MwxRaivL3DZcHqXPJ_5yQfQo8JdJME5Mtoks1mXQyYdgkFxgW5QS2cchaThNHbq_4edUJYAQAGKrjALTTq10td57aIxu43nur6O5rona_-olebu83WhWpXuToqnY8G1WIZT21w6_1p95l9xbNsGg03emH94QHdlXodbOdS22j-1p_3BvH4433Yy8ZxLjGOmTRC8DKHXIDgCTECdFrInFliMJTNzDWz2LAktdQaKYuyNNwYmmguC5CkjZ7PZ7fe_ext2KmV2_u6-agISEYEoRI3KXxO5d6F4G2ptr7aaH9QCaijNXWypo7W1MVaAz2docpaewWkFFJOyT8VAmei</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096383492</pqid></control><display><type>article</type><title>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Bin ; Song, Anna ; Xu, Hanwen ; Zhang, Zenan ; Lian, Wenhui ; Yang, Lei</creator><creatorcontrib>Gao, Bin ; Song, Anna ; Xu, Hanwen ; Zhang, Zenan ; Lian, Wenhui ; Yang, Lei</creatorcontrib><description>Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2024.3406783</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternating direction method of multipliers (ADMM) ; cooperative optimization ; Cost function ; Decomposition ; Effectiveness ; High resolution ; Image resolution ; low-rank matrix decomposition ; Matrix decomposition ; Optimization ; Phase transitions ; Radar imaging ; Radar polarimetry ; Regularization ; Singular value decomposition ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Vectors</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2024-09, Vol.5 (3), p.187-199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c922-69b887fc0c808713b80a5d9c6e3b20f3b87a6e2b615e4eb99dffb7bb41a79d093</cites><orcidid>0009-0000-4881-9005 ; 0000-0002-3856-0914 ; 0009-0007-2752-7792 ; 0009-0005-9066-0583 ; 0009-0006-1729-2144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10540574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Song, Anna</creatorcontrib><creatorcontrib>Xu, Hanwen</creatorcontrib><creatorcontrib>Zhang, Zenan</creatorcontrib><creatorcontrib>Lian, Wenhui</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><title>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.</description><subject>Algorithms</subject><subject>Alternating direction method of multipliers (ADMM)</subject><subject>cooperative optimization</subject><subject>Cost function</subject><subject>Decomposition</subject><subject>Effectiveness</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>low-rank matrix decomposition</subject><subject>Matrix decomposition</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Regularization</subject><subject>Singular value decomposition</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Vectors</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOAjEUhhujiQR5AeNiEteDZ9pOL8sJokAgJoBum3amA4MwxRaivL3DZcHqXPJ_5yQfQo8JdJME5Mtoks1mXQyYdgkFxgW5QS2cchaThNHbq_4edUJYAQAGKrjALTTq10td57aIxu43nur6O5rona_-olebu83WhWpXuToqnY8G1WIZT21w6_1p95l9xbNsGg03emH94QHdlXodbOdS22j-1p_3BvH4433Yy8ZxLjGOmTRC8DKHXIDgCTECdFrInFliMJTNzDWz2LAktdQaKYuyNNwYmmguC5CkjZ7PZ7fe_ext2KmV2_u6-agISEYEoRI3KXxO5d6F4G2ptr7aaH9QCaijNXWypo7W1MVaAz2docpaewWkFFJOyT8VAmei</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Gao, Bin</creator><creator>Song, Anna</creator><creator>Xu, Hanwen</creator><creator>Zhang, Zenan</creator><creator>Lian, Wenhui</creator><creator>Yang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0000-4881-9005</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0009-0007-2752-7792</orcidid><orcidid>https://orcid.org/0009-0005-9066-0583</orcidid><orcidid>https://orcid.org/0009-0006-1729-2144</orcidid></search><sort><creationdate>202409</creationdate><title>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</title><author>Gao, Bin ; Song, Anna ; Xu, Hanwen ; Zhang, Zenan ; Lian, Wenhui ; Yang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c922-69b887fc0c808713b80a5d9c6e3b20f3b87a6e2b615e4eb99dffb7bb41a79d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternating direction method of multipliers (ADMM)</topic><topic>cooperative optimization</topic><topic>Cost function</topic><topic>Decomposition</topic><topic>Effectiveness</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>low-rank matrix decomposition</topic><topic>Matrix decomposition</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Regularization</topic><topic>Singular value decomposition</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Song, Anna</creatorcontrib><creatorcontrib>Xu, Hanwen</creatorcontrib><creatorcontrib>Zhang, Zenan</creatorcontrib><creatorcontrib>Lian, Wenhui</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Bin</au><au>Song, Anna</au><au>Xu, Hanwen</au><au>Zhang, Zenan</au><au>Lian, Wenhui</au><au>Yang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2024-09</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>187</spage><epage>199</epage><pages>187-199</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, <inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2024.3406783</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-4881-9005</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0009-0007-2752-7792</orcidid><orcidid>https://orcid.org/0009-0005-9066-0583</orcidid><orcidid>https://orcid.org/0009-0006-1729-2144</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2576-3164 |
ispartof | IEEE journal on miniaturization for air and space systems, 2024-09, Vol.5 (3), p.187-199 |
issn | 2576-3164 2576-3164 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JMASS_2024_3406783 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alternating direction method of multipliers (ADMM) cooperative optimization Cost function Decomposition Effectiveness High resolution Image resolution low-rank matrix decomposition Matrix decomposition Optimization Phase transitions Radar imaging Radar polarimetry Regularization Singular value decomposition Synthetic aperture radar synthetic aperture radar (SAR) Vectors |
title | Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Low-Rank%20Matrix%20Decomposition%20for%20High-Resolution%20UAV-SAR%20Imagery&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Gao,%20Bin&rft.date=2024-09&rft.volume=5&rft.issue=3&rft.spage=187&rft.epage=199&rft.pages=187-199&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2024.3406783&rft_dat=%3Cproquest_RIE%3E3096383492%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096383492&rft_id=info:pmid/&rft_ieee_id=10540574&rfr_iscdi=true |