Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery

Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on miniaturization for air and space systems 2024-09, Vol.5 (3), p.187-199
Hauptverfasser: Gao, Bin, Song, Anna, Xu, Hanwen, Zhang, Zenan, Lian, Wenhui, Yang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 3
container_start_page 187
container_title IEEE journal on miniaturization for air and space systems
container_volume 5
creator Gao, Bin
Song, Anna
Xu, Hanwen
Zhang, Zenan
Lian, Wenhui
Yang, Lei
description Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, \ell _{1} -norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.
doi_str_mv 10.1109/JMASS.2024.3406783
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JMASS_2024_3406783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10540574</ieee_id><sourcerecordid>3096383492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c922-69b887fc0c808713b80a5d9c6e3b20f3b87a6e2b615e4eb99dffb7bb41a79d093</originalsourceid><addsrcrecordid>eNpNkMtOAjEUhhujiQR5AeNiEteDZ9pOL8sJokAgJoBum3amA4MwxRaivL3DZcHqXPJ_5yQfQo8JdJME5Mtoks1mXQyYdgkFxgW5QS2cchaThNHbq_4edUJYAQAGKrjALTTq10td57aIxu43nur6O5rona_-olebu83WhWpXuToqnY8G1WIZT21w6_1p95l9xbNsGg03emH94QHdlXodbOdS22j-1p_3BvH4433Yy8ZxLjGOmTRC8DKHXIDgCTECdFrInFliMJTNzDWz2LAktdQaKYuyNNwYmmguC5CkjZ7PZ7fe_ext2KmV2_u6-agISEYEoRI3KXxO5d6F4G2ptr7aaH9QCaijNXWypo7W1MVaAz2docpaewWkFFJOyT8VAmei</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096383492</pqid></control><display><type>article</type><title>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Bin ; Song, Anna ; Xu, Hanwen ; Zhang, Zenan ; Lian, Wenhui ; Yang, Lei</creator><creatorcontrib>Gao, Bin ; Song, Anna ; Xu, Hanwen ; Zhang, Zenan ; Lian, Wenhui ; Yang, Lei</creatorcontrib><description>Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ell _{1} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2024.3406783</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternating direction method of multipliers (ADMM) ; cooperative optimization ; Cost function ; Decomposition ; Effectiveness ; High resolution ; Image resolution ; low-rank matrix decomposition ; Matrix decomposition ; Optimization ; Phase transitions ; Radar imaging ; Radar polarimetry ; Regularization ; Singular value decomposition ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Vectors</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2024-09, Vol.5 (3), p.187-199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c922-69b887fc0c808713b80a5d9c6e3b20f3b87a6e2b615e4eb99dffb7bb41a79d093</cites><orcidid>0009-0000-4881-9005 ; 0000-0002-3856-0914 ; 0009-0007-2752-7792 ; 0009-0005-9066-0583 ; 0009-0006-1729-2144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10540574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10540574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Song, Anna</creatorcontrib><creatorcontrib>Xu, Hanwen</creatorcontrib><creatorcontrib>Zhang, Zenan</creatorcontrib><creatorcontrib>Lian, Wenhui</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><title>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ell _{1} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.</description><subject>Algorithms</subject><subject>Alternating direction method of multipliers (ADMM)</subject><subject>cooperative optimization</subject><subject>Cost function</subject><subject>Decomposition</subject><subject>Effectiveness</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>low-rank matrix decomposition</subject><subject>Matrix decomposition</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Regularization</subject><subject>Singular value decomposition</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Vectors</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOAjEUhhujiQR5AeNiEteDZ9pOL8sJokAgJoBum3amA4MwxRaivL3DZcHqXPJ_5yQfQo8JdJME5Mtoks1mXQyYdgkFxgW5QS2cchaThNHbq_4edUJYAQAGKrjALTTq10td57aIxu43nur6O5rona_-olebu83WhWpXuToqnY8G1WIZT21w6_1p95l9xbNsGg03emH94QHdlXodbOdS22j-1p_3BvH4433Yy8ZxLjGOmTRC8DKHXIDgCTECdFrInFliMJTNzDWz2LAktdQaKYuyNNwYmmguC5CkjZ7PZ7fe_ext2KmV2_u6-agISEYEoRI3KXxO5d6F4G2ptr7aaH9QCaijNXWypo7W1MVaAz2docpaewWkFFJOyT8VAmei</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Gao, Bin</creator><creator>Song, Anna</creator><creator>Xu, Hanwen</creator><creator>Zhang, Zenan</creator><creator>Lian, Wenhui</creator><creator>Yang, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0000-4881-9005</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0009-0007-2752-7792</orcidid><orcidid>https://orcid.org/0009-0005-9066-0583</orcidid><orcidid>https://orcid.org/0009-0006-1729-2144</orcidid></search><sort><creationdate>202409</creationdate><title>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</title><author>Gao, Bin ; Song, Anna ; Xu, Hanwen ; Zhang, Zenan ; Lian, Wenhui ; Yang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c922-69b887fc0c808713b80a5d9c6e3b20f3b87a6e2b615e4eb99dffb7bb41a79d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternating direction method of multipliers (ADMM)</topic><topic>cooperative optimization</topic><topic>Cost function</topic><topic>Decomposition</topic><topic>Effectiveness</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>low-rank matrix decomposition</topic><topic>Matrix decomposition</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Regularization</topic><topic>Singular value decomposition</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Song, Anna</creatorcontrib><creatorcontrib>Xu, Hanwen</creatorcontrib><creatorcontrib>Zhang, Zenan</creatorcontrib><creatorcontrib>Lian, Wenhui</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Bin</au><au>Song, Anna</au><au>Xu, Hanwen</au><au>Zhang, Zenan</au><au>Lian, Wenhui</au><au>Yang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2024-09</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>187</spage><epage>199</epage><pages>187-199</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>Low-rank matrix decomposition is effective for sparse recovery. However, the conventions are limited in accuracy for high-resolution synthetic aperture radar (SAR) imagery due to the shrinkage effect in the cost function, which leads to biased estimates. To this end, an enhanced-low rank matrix decomposition (E-LRMD) SAR imaging algorithm is proposed, which employs a factor group-sparse regularization (FGSR) to approximate the intended cost function, so that the low-rank features can be represented. Since, the constructed regularization function is factorized, the singular value decomposition is avoided, and the computational burden can be reduced accordingly. Furthermore, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ell _{1} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm is incorporated to encode the sparse feature. To incorporate with the enhancement of multiple features, the alternating direction method of multipliers (ADMM) framework is utilized. Therefore, both the low-rank and sparse features can be accurately recovered and enhanced, cooperatively, where the error propagation between the enhancement of multiple features is minimized. In the experiments, the effectiveness and robustness of the algorithm are verified by the simulated data and practical UAV-SAR data, respectively. Also, a phase transition diagram (PTD) experiment is carried out to analyse the advantages of the proposed algorithm in terms of quantitative aspects compared with the conventional methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMASS.2024.3406783</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-4881-9005</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0009-0007-2752-7792</orcidid><orcidid>https://orcid.org/0009-0005-9066-0583</orcidid><orcidid>https://orcid.org/0009-0006-1729-2144</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3164
ispartof IEEE journal on miniaturization for air and space systems, 2024-09, Vol.5 (3), p.187-199
issn 2576-3164
2576-3164
language eng
recordid cdi_crossref_primary_10_1109_JMASS_2024_3406783
source IEEE Electronic Library (IEL)
subjects Algorithms
Alternating direction method of multipliers (ADMM)
cooperative optimization
Cost function
Decomposition
Effectiveness
High resolution
Image resolution
low-rank matrix decomposition
Matrix decomposition
Optimization
Phase transitions
Radar imaging
Radar polarimetry
Regularization
Singular value decomposition
Synthetic aperture radar
synthetic aperture radar (SAR)
Vectors
title Enhanced Low-Rank Matrix Decomposition for High-Resolution UAV-SAR Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Low-Rank%20Matrix%20Decomposition%20for%20High-Resolution%20UAV-SAR%20Imagery&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Gao,%20Bin&rft.date=2024-09&rft.volume=5&rft.issue=3&rft.spage=187&rft.epage=199&rft.pages=187-199&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2024.3406783&rft_dat=%3Cproquest_RIE%3E3096383492%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096383492&rft_id=info:pmid/&rft_ieee_id=10540574&rfr_iscdi=true