Noise-Resilient Photonic Analog Neural Networks
The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) compone...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2024-11, Vol.42 (22), p.7969-7976 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7976 |
---|---|
container_issue | 22 |
container_start_page | 7969 |
container_title | Journal of lightwave technology |
container_volume | 42 |
creator | Varri, Akhil Bruckerhoff-Pluckelmann, Frank Dijkstra, Jelle Wendland, Daniel Bankwitz, Rasmus Agnihotri, Apoorv Pernice, Wolfram H. P. |
description | The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators. |
doi_str_mv | 10.1109/JLT.2024.3433454 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2024_3433454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10609496</ieee_id><sourcerecordid>10_1109_JLT_2024_3433454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-2e34285da7658c38b4dc8464b1918be284ebbb8a4b6fc141167a101d916becaf3</originalsourceid><addsrcrecordid>eNpNj71OwzAURi0EEqGwMzDkBZz62jeOM1YVv4oKQmW2bOcGAiFBcRDi7UnVDkxn-c4nHcYuQWQAolw-VNtMComZQqUwxyOWQJ4bLiWoY5aIQiluComn7CzGdyEA0RQJW26GNhJ_pth2LfVT-vQ2TEPfhnTVu254TTf0PbpuxvQzjB_xnJ00rot0ceCCvdxcb9d3vHq8vV-vKh4Ai4lLUihNXrtC5yYo47EOBjV6KMF4kgbJe28cet3MBoAuHAioS9CegmvUgon9bxiHGEdq7NfYfrrx14Kwu2A7B9tdsD0Ez8rVXmmJ6N9cixJLrf4AMcxRNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noise-Resilient Photonic Analog Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Varri, Akhil ; Bruckerhoff-Pluckelmann, Frank ; Dijkstra, Jelle ; Wendland, Daniel ; Bankwitz, Rasmus ; Agnihotri, Apoorv ; Pernice, Wolfram H. P.</creator><creatorcontrib>Varri, Akhil ; Bruckerhoff-Pluckelmann, Frank ; Dijkstra, Jelle ; Wendland, Daniel ; Bankwitz, Rasmus ; Agnihotri, Apoorv ; Pernice, Wolfram H. P.</creatorcontrib><description>The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2024.3433454</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Electro-absorption modulators ; field programmable gate array (FPGA) ; Neural networks ; Noise ; Photonic integrated circuits ; photonic neural networks ; Photonics ; robust deep neural networks ; Signal to noise ratio ; silicon photonics ; Training</subject><ispartof>Journal of lightwave technology, 2024-11, Vol.42 (22), p.7969-7976</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4569-4213 ; 0009-0008-5948-4181 ; 0000-0002-4873-5183 ; 0000-0002-1341-8188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10609496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10609496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varri, Akhil</creatorcontrib><creatorcontrib>Bruckerhoff-Pluckelmann, Frank</creatorcontrib><creatorcontrib>Dijkstra, Jelle</creatorcontrib><creatorcontrib>Wendland, Daniel</creatorcontrib><creatorcontrib>Bankwitz, Rasmus</creatorcontrib><creatorcontrib>Agnihotri, Apoorv</creatorcontrib><creatorcontrib>Pernice, Wolfram H. P.</creatorcontrib><title>Noise-Resilient Photonic Analog Neural Networks</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.</description><subject>Circuits</subject><subject>Electro-absorption modulators</subject><subject>field programmable gate array (FPGA)</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Photonic integrated circuits</subject><subject>photonic neural networks</subject><subject>Photonics</subject><subject>robust deep neural networks</subject><subject>Signal to noise ratio</subject><subject>silicon photonics</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj71OwzAURi0EEqGwMzDkBZz62jeOM1YVv4oKQmW2bOcGAiFBcRDi7UnVDkxn-c4nHcYuQWQAolw-VNtMComZQqUwxyOWQJ4bLiWoY5aIQiluComn7CzGdyEA0RQJW26GNhJ_pth2LfVT-vQ2TEPfhnTVu254TTf0PbpuxvQzjB_xnJ00rot0ceCCvdxcb9d3vHq8vV-vKh4Ai4lLUihNXrtC5yYo47EOBjV6KMF4kgbJe28cet3MBoAuHAioS9CegmvUgon9bxiHGEdq7NfYfrrx14Kwu2A7B9tdsD0Ez8rVXmmJ6N9cixJLrf4AMcxRNg</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Varri, Akhil</creator><creator>Bruckerhoff-Pluckelmann, Frank</creator><creator>Dijkstra, Jelle</creator><creator>Wendland, Daniel</creator><creator>Bankwitz, Rasmus</creator><creator>Agnihotri, Apoorv</creator><creator>Pernice, Wolfram H. P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4569-4213</orcidid><orcidid>https://orcid.org/0009-0008-5948-4181</orcidid><orcidid>https://orcid.org/0000-0002-4873-5183</orcidid><orcidid>https://orcid.org/0000-0002-1341-8188</orcidid></search><sort><creationdate>20241115</creationdate><title>Noise-Resilient Photonic Analog Neural Networks</title><author>Varri, Akhil ; Bruckerhoff-Pluckelmann, Frank ; Dijkstra, Jelle ; Wendland, Daniel ; Bankwitz, Rasmus ; Agnihotri, Apoorv ; Pernice, Wolfram H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-2e34285da7658c38b4dc8464b1918be284ebbb8a4b6fc141167a101d916becaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Electro-absorption modulators</topic><topic>field programmable gate array (FPGA)</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Photonic integrated circuits</topic><topic>photonic neural networks</topic><topic>Photonics</topic><topic>robust deep neural networks</topic><topic>Signal to noise ratio</topic><topic>silicon photonics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varri, Akhil</creatorcontrib><creatorcontrib>Bruckerhoff-Pluckelmann, Frank</creatorcontrib><creatorcontrib>Dijkstra, Jelle</creatorcontrib><creatorcontrib>Wendland, Daniel</creatorcontrib><creatorcontrib>Bankwitz, Rasmus</creatorcontrib><creatorcontrib>Agnihotri, Apoorv</creatorcontrib><creatorcontrib>Pernice, Wolfram H. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varri, Akhil</au><au>Bruckerhoff-Pluckelmann, Frank</au><au>Dijkstra, Jelle</au><au>Wendland, Daniel</au><au>Bankwitz, Rasmus</au><au>Agnihotri, Apoorv</au><au>Pernice, Wolfram H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Resilient Photonic Analog Neural Networks</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>42</volume><issue>22</issue><spage>7969</spage><epage>7976</epage><pages>7969-7976</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.</abstract><pub>IEEE</pub><doi>10.1109/JLT.2024.3433454</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4569-4213</orcidid><orcidid>https://orcid.org/0009-0008-5948-4181</orcidid><orcidid>https://orcid.org/0000-0002-4873-5183</orcidid><orcidid>https://orcid.org/0000-0002-1341-8188</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2024-11, Vol.42 (22), p.7969-7976 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2024_3433454 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Electro-absorption modulators field programmable gate array (FPGA) Neural networks Noise Photonic integrated circuits photonic neural networks Photonics robust deep neural networks Signal to noise ratio silicon photonics Training |
title | Noise-Resilient Photonic Analog Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Resilient%20Photonic%20Analog%20Neural%20Networks&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Varri,%20Akhil&rft.date=2024-11-15&rft.volume=42&rft.issue=22&rft.spage=7969&rft.epage=7976&rft.pages=7969-7976&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2024.3433454&rft_dat=%3Ccrossref_RIE%3E10_1109_JLT_2024_3433454%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10609496&rfr_iscdi=true |