Noise-Resilient Photonic Analog Neural Networks

The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2024-11, Vol.42 (22), p.7969-7976
Hauptverfasser: Varri, Akhil, Bruckerhoff-Pluckelmann, Frank, Dijkstra, Jelle, Wendland, Daniel, Bankwitz, Rasmus, Agnihotri, Apoorv, Pernice, Wolfram H. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7976
container_issue 22
container_start_page 7969
container_title Journal of lightwave technology
container_volume 42
creator Varri, Akhil
Bruckerhoff-Pluckelmann, Frank
Dijkstra, Jelle
Wendland, Daniel
Bankwitz, Rasmus
Agnihotri, Apoorv
Pernice, Wolfram H. P.
description The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.
doi_str_mv 10.1109/JLT.2024.3433454
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2024_3433454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10609496</ieee_id><sourcerecordid>10_1109_JLT_2024_3433454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-2e34285da7658c38b4dc8464b1918be284ebbb8a4b6fc141167a101d916becaf3</originalsourceid><addsrcrecordid>eNpNj71OwzAURi0EEqGwMzDkBZz62jeOM1YVv4oKQmW2bOcGAiFBcRDi7UnVDkxn-c4nHcYuQWQAolw-VNtMComZQqUwxyOWQJ4bLiWoY5aIQiluComn7CzGdyEA0RQJW26GNhJ_pth2LfVT-vQ2TEPfhnTVu254TTf0PbpuxvQzjB_xnJ00rot0ceCCvdxcb9d3vHq8vV-vKh4Ai4lLUihNXrtC5yYo47EOBjV6KMF4kgbJe28cet3MBoAuHAioS9CegmvUgon9bxiHGEdq7NfYfrrx14Kwu2A7B9tdsD0Ez8rVXmmJ6N9cixJLrf4AMcxRNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noise-Resilient Photonic Analog Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Varri, Akhil ; Bruckerhoff-Pluckelmann, Frank ; Dijkstra, Jelle ; Wendland, Daniel ; Bankwitz, Rasmus ; Agnihotri, Apoorv ; Pernice, Wolfram H. P.</creator><creatorcontrib>Varri, Akhil ; Bruckerhoff-Pluckelmann, Frank ; Dijkstra, Jelle ; Wendland, Daniel ; Bankwitz, Rasmus ; Agnihotri, Apoorv ; Pernice, Wolfram H. P.</creatorcontrib><description>The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2024.3433454</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Electro-absorption modulators ; field programmable gate array (FPGA) ; Neural networks ; Noise ; Photonic integrated circuits ; photonic neural networks ; Photonics ; robust deep neural networks ; Signal to noise ratio ; silicon photonics ; Training</subject><ispartof>Journal of lightwave technology, 2024-11, Vol.42 (22), p.7969-7976</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4569-4213 ; 0009-0008-5948-4181 ; 0000-0002-4873-5183 ; 0000-0002-1341-8188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10609496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10609496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varri, Akhil</creatorcontrib><creatorcontrib>Bruckerhoff-Pluckelmann, Frank</creatorcontrib><creatorcontrib>Dijkstra, Jelle</creatorcontrib><creatorcontrib>Wendland, Daniel</creatorcontrib><creatorcontrib>Bankwitz, Rasmus</creatorcontrib><creatorcontrib>Agnihotri, Apoorv</creatorcontrib><creatorcontrib>Pernice, Wolfram H. P.</creatorcontrib><title>Noise-Resilient Photonic Analog Neural Networks</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.</description><subject>Circuits</subject><subject>Electro-absorption modulators</subject><subject>field programmable gate array (FPGA)</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Photonic integrated circuits</subject><subject>photonic neural networks</subject><subject>Photonics</subject><subject>robust deep neural networks</subject><subject>Signal to noise ratio</subject><subject>silicon photonics</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj71OwzAURi0EEqGwMzDkBZz62jeOM1YVv4oKQmW2bOcGAiFBcRDi7UnVDkxn-c4nHcYuQWQAolw-VNtMComZQqUwxyOWQJ4bLiWoY5aIQiluComn7CzGdyEA0RQJW26GNhJ_pth2LfVT-vQ2TEPfhnTVu254TTf0PbpuxvQzjB_xnJ00rot0ceCCvdxcb9d3vHq8vV-vKh4Ai4lLUihNXrtC5yYo47EOBjV6KMF4kgbJe28cet3MBoAuHAioS9CegmvUgon9bxiHGEdq7NfYfrrx14Kwu2A7B9tdsD0Ez8rVXmmJ6N9cixJLrf4AMcxRNg</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Varri, Akhil</creator><creator>Bruckerhoff-Pluckelmann, Frank</creator><creator>Dijkstra, Jelle</creator><creator>Wendland, Daniel</creator><creator>Bankwitz, Rasmus</creator><creator>Agnihotri, Apoorv</creator><creator>Pernice, Wolfram H. P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4569-4213</orcidid><orcidid>https://orcid.org/0009-0008-5948-4181</orcidid><orcidid>https://orcid.org/0000-0002-4873-5183</orcidid><orcidid>https://orcid.org/0000-0002-1341-8188</orcidid></search><sort><creationdate>20241115</creationdate><title>Noise-Resilient Photonic Analog Neural Networks</title><author>Varri, Akhil ; Bruckerhoff-Pluckelmann, Frank ; Dijkstra, Jelle ; Wendland, Daniel ; Bankwitz, Rasmus ; Agnihotri, Apoorv ; Pernice, Wolfram H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-2e34285da7658c38b4dc8464b1918be284ebbb8a4b6fc141167a101d916becaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuits</topic><topic>Electro-absorption modulators</topic><topic>field programmable gate array (FPGA)</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Photonic integrated circuits</topic><topic>photonic neural networks</topic><topic>Photonics</topic><topic>robust deep neural networks</topic><topic>Signal to noise ratio</topic><topic>silicon photonics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varri, Akhil</creatorcontrib><creatorcontrib>Bruckerhoff-Pluckelmann, Frank</creatorcontrib><creatorcontrib>Dijkstra, Jelle</creatorcontrib><creatorcontrib>Wendland, Daniel</creatorcontrib><creatorcontrib>Bankwitz, Rasmus</creatorcontrib><creatorcontrib>Agnihotri, Apoorv</creatorcontrib><creatorcontrib>Pernice, Wolfram H. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varri, Akhil</au><au>Bruckerhoff-Pluckelmann, Frank</au><au>Dijkstra, Jelle</au><au>Wendland, Daniel</au><au>Bankwitz, Rasmus</au><au>Agnihotri, Apoorv</au><au>Pernice, Wolfram H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Resilient Photonic Analog Neural Networks</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>42</volume><issue>22</issue><spage>7969</spage><epage>7976</epage><pages>7969-7976</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The explosion of generative artificial intelligence (AI) has led to an unprecedented demand for AI accelerators. Photonic computing holds promise in this direction, offering speedups in bandwidth and latency. However, photonic integrated circuits (PICs) and their periphery input/output (I/O) components tend to be noisy due to the nature of analog computing. This can lead to accuracy degradation if not accounted for properly. In this paper, we characterize the typical noise levels present in photonic hardware accelerators for deep neural networks (DNNs). We explore several techniques including knowledge distillation, stability training, and standard Gaussian noise injection to improve the robustness of photonic DNNs. We validate our methods by training a Resnet model on the CIFAR-10 dataset and comparing the simulated test accuracy with different noise levels and image distortions. The robust training techniques discussed in this paper combined with the noise analysis of PICs provide a blueprint for robust photonic AI inference accelerators.</abstract><pub>IEEE</pub><doi>10.1109/JLT.2024.3433454</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4569-4213</orcidid><orcidid>https://orcid.org/0009-0008-5948-4181</orcidid><orcidid>https://orcid.org/0000-0002-4873-5183</orcidid><orcidid>https://orcid.org/0000-0002-1341-8188</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2024-11, Vol.42 (22), p.7969-7976
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2024_3433454
source IEEE Electronic Library (IEL)
subjects Circuits
Electro-absorption modulators
field programmable gate array (FPGA)
Neural networks
Noise
Photonic integrated circuits
photonic neural networks
Photonics
robust deep neural networks
Signal to noise ratio
silicon photonics
Training
title Noise-Resilient Photonic Analog Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Resilient%20Photonic%20Analog%20Neural%20Networks&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Varri,%20Akhil&rft.date=2024-11-15&rft.volume=42&rft.issue=22&rft.spage=7969&rft.epage=7976&rft.pages=7969-7976&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2024.3433454&rft_dat=%3Ccrossref_RIE%3E10_1109_JLT_2024_3433454%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10609496&rfr_iscdi=true