Demonstration of Silicon-Photonics Hybrid Glass-Epoxy Substrate for Co-Packaged Optics
To realize a new package substrate for co-packaged optics, a silicon-photonics hybrid glass-epoxy substrate was demonstrated. In the substrate, silicon photonics dies working as optical/electrical conversion engines are embedded. Additionally, it includes optical redistribution composed of polymer w...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2023-08, Vol.41 (15), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To realize a new package substrate for co-packaged optics, a silicon-photonics hybrid glass-epoxy substrate was demonstrated. In the substrate, silicon photonics dies working as optical/electrical conversion engines are embedded. Additionally, it includes optical redistribution composed of polymer waveguides and mirror-based optical coupling structures between the polymer and silicon waveguides. A demonstration sample was designed for a total bandwidth of 10 Tbps using silicon photonics dies with arrayed waveguide gratings, wavelength splitters, and polarization splitters/rotators for 16-ch wavelength division multiplexing (WDM). It was fabricated using unique key technologies, such as silicon photonics embedding, micromirror fabrication, and single-mode polymer waveguide fabrication. Its wavelength multiplexing operation and signal transmission characteristics were evaluated. As a result, the hybrid substrate was discovered to be capable of 112 Gbps pulse amplitude modulation 4 (PAM-4) transmission with a 16-ch WDM function because the transmitter dispersion and eye closure quaternary (TDECQ) values of less than 3.4 dB were obtained and 16-ch WDM spectrum were clearly visible. To the best of our knowledge, the working of such a hybrid substrate was demonstrated for the first time. This demonstration implies that the hybrid substrate is feasible, and the above-mentioned novel technologies are crucial to its development. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2023.3283988 |