SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits
Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-12, Vol.40 (24), p.7856-7868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7868 |
---|---|
container_issue | 24 |
container_start_page | 7856 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Ye, Yinghao Ullrick, Thijs Bogaerts, Wim Dhaene, Tom Spina, Domenico |
description | Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique. |
doi_str_mv | 10.1109/JLT.2022.3206818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2022_3206818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9893343</ieee_id><sourcerecordid>2756556848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4MoOKd3wUvAc2c-miY9jjp1MnGweS5pmmhG22xJOvG_t2PT03t5nt8LDwC3GE0wRvnD62I9IYiQCSUoE1icgRFmTCSEYHoORohTmghO0ktwFcIGIZymgo_A92o5L2ZJ4dqtjLZqNJzteruXje4iLKxXvY3wzdW6CdA4D6dK9V5GDde21cmja6Xt4Mq2fTPorgvQGbiUIdi9hssvF11nFZx3UX8erPpvMlyDCyOboG9Odww-nmbr4iVZvD_Pi-kiUZTSmFTGIGkkZlzmmBtNM2SwUoRVDNW5zJHhRhDOhEorQpGpuKHcpHUtmGSpxHQM7o-7W-92vQ6x3Ljed8PLctAyxjKRioFCR0p5F4LXptx620r_U2JUHvKWQ97ykLc85R2Uu6Nitdb_eC5ySlNKfwFBsXeT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756556848</pqid></control><display><type>article</type><title>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Yinghao ; Ullrick, Thijs ; Bogaerts, Wim ; Dhaene, Tom ; Spina, Domenico</creator><creatorcontrib>Ye, Yinghao ; Ullrick, Thijs ; Bogaerts, Wim ; Dhaene, Tom ; Spina, Domenico</creatorcontrib><description>Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3206818</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Backscattering ; Circuit design ; Complex Vector Fitting ; Computational modeling ; Equivalent circuits ; Integrated circuit modeling ; Integrated circuits ; Integrated optics ; Mathematical models ; Modelling ; Optical communication ; Optical scattering ; Optical waveguides ; Performance evaluation ; photonic integrated circuits ; Photonics ; Resonators ; S parameters ; Simulation ; Simulators ; SPICE-compatible equivalent circuits ; Time domain analysis ; time-domain simulations ; Wave propagation</subject><ispartof>Journal of lightwave technology, 2022-12, Vol.40 (24), p.7856-7868</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</citedby><cites>FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</cites><orcidid>0000-0003-1112-8950 ; 0000-0003-2899-4636 ; 0000-0002-0747-8256 ; 0000-0003-2379-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9893343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9893343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Yinghao</creatorcontrib><creatorcontrib>Ullrick, Thijs</creatorcontrib><creatorcontrib>Bogaerts, Wim</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><creatorcontrib>Spina, Domenico</creatorcontrib><title>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.</description><subject>Algorithms</subject><subject>Backscattering</subject><subject>Circuit design</subject><subject>Complex Vector Fitting</subject><subject>Computational modeling</subject><subject>Equivalent circuits</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Integrated optics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optical communication</subject><subject>Optical scattering</subject><subject>Optical waveguides</subject><subject>Performance evaluation</subject><subject>photonic integrated circuits</subject><subject>Photonics</subject><subject>Resonators</subject><subject>S parameters</subject><subject>Simulation</subject><subject>Simulators</subject><subject>SPICE-compatible equivalent circuits</subject><subject>Time domain analysis</subject><subject>time-domain simulations</subject><subject>Wave propagation</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYh4MoOKd3wUvAc2c-miY9jjp1MnGweS5pmmhG22xJOvG_t2PT03t5nt8LDwC3GE0wRvnD62I9IYiQCSUoE1icgRFmTCSEYHoORohTmghO0ktwFcIGIZymgo_A92o5L2ZJ4dqtjLZqNJzteruXje4iLKxXvY3wzdW6CdA4D6dK9V5GDde21cmja6Xt4Mq2fTPorgvQGbiUIdi9hssvF11nFZx3UX8erPpvMlyDCyOboG9Odww-nmbr4iVZvD_Pi-kiUZTSmFTGIGkkZlzmmBtNM2SwUoRVDNW5zJHhRhDOhEorQpGpuKHcpHUtmGSpxHQM7o-7W-92vQ6x3Ljed8PLctAyxjKRioFCR0p5F4LXptx620r_U2JUHvKWQ97ykLc85R2Uu6Nitdb_eC5ySlNKfwFBsXeT</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Ye, Yinghao</creator><creator>Ullrick, Thijs</creator><creator>Bogaerts, Wim</creator><creator>Dhaene, Tom</creator><creator>Spina, Domenico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1112-8950</orcidid><orcidid>https://orcid.org/0000-0003-2899-4636</orcidid><orcidid>https://orcid.org/0000-0002-0747-8256</orcidid><orcidid>https://orcid.org/0000-0003-2379-5259</orcidid></search><sort><creationdate>20221215</creationdate><title>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</title><author>Ye, Yinghao ; Ullrick, Thijs ; Bogaerts, Wim ; Dhaene, Tom ; Spina, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Backscattering</topic><topic>Circuit design</topic><topic>Complex Vector Fitting</topic><topic>Computational modeling</topic><topic>Equivalent circuits</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Integrated optics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optical communication</topic><topic>Optical scattering</topic><topic>Optical waveguides</topic><topic>Performance evaluation</topic><topic>photonic integrated circuits</topic><topic>Photonics</topic><topic>Resonators</topic><topic>S parameters</topic><topic>Simulation</topic><topic>Simulators</topic><topic>SPICE-compatible equivalent circuits</topic><topic>Time domain analysis</topic><topic>time-domain simulations</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yinghao</creatorcontrib><creatorcontrib>Ullrick, Thijs</creatorcontrib><creatorcontrib>Bogaerts, Wim</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><creatorcontrib>Spina, Domenico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Yinghao</au><au>Ullrick, Thijs</au><au>Bogaerts, Wim</au><au>Dhaene, Tom</au><au>Spina, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>40</volume><issue>24</issue><spage>7856</spage><epage>7868</epage><pages>7856-7868</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3206818</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1112-8950</orcidid><orcidid>https://orcid.org/0000-0003-2899-4636</orcidid><orcidid>https://orcid.org/0000-0002-0747-8256</orcidid><orcidid>https://orcid.org/0000-0003-2379-5259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-12, Vol.40 (24), p.7856-7868 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2022_3206818 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Backscattering Circuit design Complex Vector Fitting Computational modeling Equivalent circuits Integrated circuit modeling Integrated circuits Integrated optics Mathematical models Modelling Optical communication Optical scattering Optical waveguides Performance evaluation photonic integrated circuits Photonics Resonators S parameters Simulation Simulators SPICE-compatible equivalent circuits Time domain analysis time-domain simulations Wave propagation |
title | SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPICE-Compatible%20Equivalent%20Circuit%20Models%20for%20Accurate%20Time-Domain%20Simulations%20of%20Passive%20Photonic%20Integrated%20Circuits&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ye,%20Yinghao&rft.date=2022-12-15&rft.volume=40&rft.issue=24&rft.spage=7856&rft.epage=7868&rft.pages=7856-7868&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3206818&rft_dat=%3Cproquest_RIE%3E2756556848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756556848&rft_id=info:pmid/&rft_ieee_id=9893343&rfr_iscdi=true |