SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits

Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2022-12, Vol.40 (24), p.7856-7868
Hauptverfasser: Ye, Yinghao, Ullrick, Thijs, Bogaerts, Wim, Dhaene, Tom, Spina, Domenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7868
container_issue 24
container_start_page 7856
container_title Journal of lightwave technology
container_volume 40
creator Ye, Yinghao
Ullrick, Thijs
Bogaerts, Wim
Dhaene, Tom
Spina, Domenico
description Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.
doi_str_mv 10.1109/JLT.2022.3206818
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2022_3206818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9893343</ieee_id><sourcerecordid>2756556848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4MoOKd3wUvAc2c-miY9jjp1MnGweS5pmmhG22xJOvG_t2PT03t5nt8LDwC3GE0wRvnD62I9IYiQCSUoE1icgRFmTCSEYHoORohTmghO0ktwFcIGIZymgo_A92o5L2ZJ4dqtjLZqNJzteruXje4iLKxXvY3wzdW6CdA4D6dK9V5GDde21cmja6Xt4Mq2fTPorgvQGbiUIdi9hssvF11nFZx3UX8erPpvMlyDCyOboG9Odww-nmbr4iVZvD_Pi-kiUZTSmFTGIGkkZlzmmBtNM2SwUoRVDNW5zJHhRhDOhEorQpGpuKHcpHUtmGSpxHQM7o-7W-92vQ6x3Ljed8PLctAyxjKRioFCR0p5F4LXptx620r_U2JUHvKWQ97ykLc85R2Uu6Nitdb_eC5ySlNKfwFBsXeT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756556848</pqid></control><display><type>article</type><title>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Yinghao ; Ullrick, Thijs ; Bogaerts, Wim ; Dhaene, Tom ; Spina, Domenico</creator><creatorcontrib>Ye, Yinghao ; Ullrick, Thijs ; Bogaerts, Wim ; Dhaene, Tom ; Spina, Domenico</creatorcontrib><description>Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3206818</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Backscattering ; Circuit design ; Complex Vector Fitting ; Computational modeling ; Equivalent circuits ; Integrated circuit modeling ; Integrated circuits ; Integrated optics ; Mathematical models ; Modelling ; Optical communication ; Optical scattering ; Optical waveguides ; Performance evaluation ; photonic integrated circuits ; Photonics ; Resonators ; S parameters ; Simulation ; Simulators ; SPICE-compatible equivalent circuits ; Time domain analysis ; time-domain simulations ; Wave propagation</subject><ispartof>Journal of lightwave technology, 2022-12, Vol.40 (24), p.7856-7868</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</citedby><cites>FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</cites><orcidid>0000-0003-1112-8950 ; 0000-0003-2899-4636 ; 0000-0002-0747-8256 ; 0000-0003-2379-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9893343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9893343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Yinghao</creatorcontrib><creatorcontrib>Ullrick, Thijs</creatorcontrib><creatorcontrib>Bogaerts, Wim</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><creatorcontrib>Spina, Domenico</creatorcontrib><title>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.</description><subject>Algorithms</subject><subject>Backscattering</subject><subject>Circuit design</subject><subject>Complex Vector Fitting</subject><subject>Computational modeling</subject><subject>Equivalent circuits</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Integrated optics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optical communication</subject><subject>Optical scattering</subject><subject>Optical waveguides</subject><subject>Performance evaluation</subject><subject>photonic integrated circuits</subject><subject>Photonics</subject><subject>Resonators</subject><subject>S parameters</subject><subject>Simulation</subject><subject>Simulators</subject><subject>SPICE-compatible equivalent circuits</subject><subject>Time domain analysis</subject><subject>time-domain simulations</subject><subject>Wave propagation</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYh4MoOKd3wUvAc2c-miY9jjp1MnGweS5pmmhG22xJOvG_t2PT03t5nt8LDwC3GE0wRvnD62I9IYiQCSUoE1icgRFmTCSEYHoORohTmghO0ktwFcIGIZymgo_A92o5L2ZJ4dqtjLZqNJzteruXje4iLKxXvY3wzdW6CdA4D6dK9V5GDde21cmja6Xt4Mq2fTPorgvQGbiUIdi9hssvF11nFZx3UX8erPpvMlyDCyOboG9Odww-nmbr4iVZvD_Pi-kiUZTSmFTGIGkkZlzmmBtNM2SwUoRVDNW5zJHhRhDOhEorQpGpuKHcpHUtmGSpxHQM7o-7W-92vQ6x3Ljed8PLctAyxjKRioFCR0p5F4LXptx620r_U2JUHvKWQ97ykLc85R2Uu6Nitdb_eC5ySlNKfwFBsXeT</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Ye, Yinghao</creator><creator>Ullrick, Thijs</creator><creator>Bogaerts, Wim</creator><creator>Dhaene, Tom</creator><creator>Spina, Domenico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1112-8950</orcidid><orcidid>https://orcid.org/0000-0003-2899-4636</orcidid><orcidid>https://orcid.org/0000-0002-0747-8256</orcidid><orcidid>https://orcid.org/0000-0003-2379-5259</orcidid></search><sort><creationdate>20221215</creationdate><title>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</title><author>Ye, Yinghao ; Ullrick, Thijs ; Bogaerts, Wim ; Dhaene, Tom ; Spina, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-bff0afa157a917fe360f1cc25b50d9a90f7f82758c4b230fb7f37f4dd85a54a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Backscattering</topic><topic>Circuit design</topic><topic>Complex Vector Fitting</topic><topic>Computational modeling</topic><topic>Equivalent circuits</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Integrated optics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optical communication</topic><topic>Optical scattering</topic><topic>Optical waveguides</topic><topic>Performance evaluation</topic><topic>photonic integrated circuits</topic><topic>Photonics</topic><topic>Resonators</topic><topic>S parameters</topic><topic>Simulation</topic><topic>Simulators</topic><topic>SPICE-compatible equivalent circuits</topic><topic>Time domain analysis</topic><topic>time-domain simulations</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yinghao</creatorcontrib><creatorcontrib>Ullrick, Thijs</creatorcontrib><creatorcontrib>Bogaerts, Wim</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><creatorcontrib>Spina, Domenico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Yinghao</au><au>Ullrick, Thijs</au><au>Bogaerts, Wim</au><au>Dhaene, Tom</au><au>Spina, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>40</volume><issue>24</issue><spage>7856</spage><epage>7868</epage><pages>7856-7868</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Passive photonic integrated circuits (PICs) can be easily characterized in the frequency-domain, but their accurate time-domain performance evaluation is a hurdle for system-level designers, especially when dealing with resonant circuits having highly dispersive behavior, such as ring resonators. In this paper, a new equivalent circuit modeling and simulation approach is proposed, based on the Complex Vector Fitting algorithm, able to perform accurate and robust time-domain simulations of passive PICs directly in standard SPICE simulators. The proposed modeling technique starts from scattering parameters of passive PICs, and is able to capture linear and high order dispersion, backscattering, and wavelength dependent effects. Considering the different nature of optical and electronic signals, a novel concept of equivalent voltage and current for optical waveguides is proposed to simplify the optical to electronic ports conversion and to make it possible to connect and terminate the equivalent circuit models as needed in SPICE simulators, natively supporting bidirectional signal propagation in a waveguide. This work provides a precise and reliable solution to evaluate time-domain characteristics of passive PICs and to access any internal nodes within a circuit, such as the signals inside a ring resonator. Three examples of time-domain simulations of passive PICs in commercial SPICE simulators are presented to demonstrate the flexibility and advantages of the proposed technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3206818</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1112-8950</orcidid><orcidid>https://orcid.org/0000-0003-2899-4636</orcidid><orcidid>https://orcid.org/0000-0002-0747-8256</orcidid><orcidid>https://orcid.org/0000-0003-2379-5259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-12, Vol.40 (24), p.7856-7868
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2022_3206818
source IEEE Electronic Library (IEL)
subjects Algorithms
Backscattering
Circuit design
Complex Vector Fitting
Computational modeling
Equivalent circuits
Integrated circuit modeling
Integrated circuits
Integrated optics
Mathematical models
Modelling
Optical communication
Optical scattering
Optical waveguides
Performance evaluation
photonic integrated circuits
Photonics
Resonators
S parameters
Simulation
Simulators
SPICE-compatible equivalent circuits
Time domain analysis
time-domain simulations
Wave propagation
title SPICE-Compatible Equivalent Circuit Models for Accurate Time-Domain Simulations of Passive Photonic Integrated Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPICE-Compatible%20Equivalent%20Circuit%20Models%20for%20Accurate%20Time-Domain%20Simulations%20of%20Passive%20Photonic%20Integrated%20Circuits&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ye,%20Yinghao&rft.date=2022-12-15&rft.volume=40&rft.issue=24&rft.spage=7856&rft.epage=7868&rft.pages=7856-7868&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3206818&rft_dat=%3Cproquest_RIE%3E2756556848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756556848&rft_id=info:pmid/&rft_ieee_id=9893343&rfr_iscdi=true