Deep Learning Piston Aberration Control of Fiber Laser Phased Array By Spiral Phase Modulation

The stochastic parallel gradient descent (SPGD) algorithm is usually employed as the control strategy for phase-locking in fiber laser phased array systems. However, the convergence speed of the SPGD algorithm will slow down as the number of array elements increases. To improve the control bandwidth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2022-06, Vol.40 (12), p.3980-3991
Hauptverfasser: Zuo, Jing, Jia, Haolong, Geng, Chao, Bao, Qiliang, Zou, Fan, Li, Ziqiang, Jiang, Jing, Li, Feng, Li, Bincheng, Li, Xinyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3991
container_issue 12
container_start_page 3980
container_title Journal of lightwave technology
container_volume 40
creator Zuo, Jing
Jia, Haolong
Geng, Chao
Bao, Qiliang
Zou, Fan
Li, Ziqiang
Jiang, Jing
Li, Feng
Li, Bincheng
Li, Xinyang
description The stochastic parallel gradient descent (SPGD) algorithm is usually employed as the control strategy for phase-locking in fiber laser phased array systems. However, the convergence speed of the SPGD algorithm will slow down as the number of array elements increases. To improve the control bandwidth, the convolutional neural network is introduced to quickly calculate the initial piston aberration in a single step. In addition, the irrationality of the commonly used Mean Square Error (MSE) evaluation function in existing convolutional neural networks is analyzed. A new evaluation function NPCD (Normalized Phase Cosine Distance) is proposed to improve the accuracy of the neural networks. The results show that the piston aberration residual is 0.005 and the normalized power in the bucket (PIB) is 0.993 in the simulation and 0.933 in the experiment after accurate preliminary compensation, which means that the system directly enters the co-phase state. We also demonstrate the robustness and scalability by expanding the scale of the array.
doi_str_mv 10.1109/JLT.2022.3151628
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2022_3151628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9714866</ieee_id><sourcerecordid>2674084062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-44231ec72c073ac4b2cfeecff849ed741d0ce2e41f4a09602effc5f93e545e383</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-JiiXOCX0mcYymUh4KoRLliuc4aUoU42Omh_x6XVFx2VqtvdleD0CUlKaWkvHmuVikjjKWcZjRn8ghNaJbJhDHKj9GEFJwnsmDiFJ2FsCGECiGLCfq4A-hxBdp3TfeJl00YXIdna_BeD01s564bvGuxs3jRxDGudIh1-RWlxrOI7fDtDr_1jdftOMYvrt62f_ZzdGJ1G-DioFP0vrhfzR-T6vXhaT6rEsNKOiRCME7BFMzEP7URa2YsgLFWihLqQtCaGGAgqBWalDlhYK3JbMkhExlwyafoetzbe_ezhTCojdv6Lp5ULC8EkYLkLFJkpIx3IXiwqvfNt_Y7RYnap6hiimqfojqkGC1Xo6UBgH-8LKiQec5_AY9-bbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674084062</pqid></control><display><type>article</type><title>Deep Learning Piston Aberration Control of Fiber Laser Phased Array By Spiral Phase Modulation</title><source>IEEE Electronic Library (IEL)</source><creator>Zuo, Jing ; Jia, Haolong ; Geng, Chao ; Bao, Qiliang ; Zou, Fan ; Li, Ziqiang ; Jiang, Jing ; Li, Feng ; Li, Bincheng ; Li, Xinyang</creator><creatorcontrib>Zuo, Jing ; Jia, Haolong ; Geng, Chao ; Bao, Qiliang ; Zou, Fan ; Li, Ziqiang ; Jiang, Jing ; Li, Feng ; Li, Bincheng ; Li, Xinyang</creatorcontrib><description>The stochastic parallel gradient descent (SPGD) algorithm is usually employed as the control strategy for phase-locking in fiber laser phased array systems. However, the convergence speed of the SPGD algorithm will slow down as the number of array elements increases. To improve the control bandwidth, the convolutional neural network is introduced to quickly calculate the initial piston aberration in a single step. In addition, the irrationality of the commonly used Mean Square Error (MSE) evaluation function in existing convolutional neural networks is analyzed. A new evaluation function NPCD (Normalized Phase Cosine Distance) is proposed to improve the accuracy of the neural networks. The results show that the piston aberration residual is 0.005 and the normalized power in the bucket (PIB) is 0.993 in the simulation and 0.933 in the experiment after accurate preliminary compensation, which means that the system directly enters the co-phase state. We also demonstrate the robustness and scalability by expanding the scale of the array.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3151628</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aberration ; Algorithms ; Artificial neural networks ; Convolutional neural network ; Convolutional neural networks ; evaluation func- tion ; fiber laser phased array ; Fiber lasers ; Laser arrays ; Laser beams ; Locking ; Machine learning ; Neural networks ; Phase modulation ; phase-locking ; Phased arrays ; Pistons ; Shape ; Spirals ; Trigonometric functions</subject><ispartof>Journal of lightwave technology, 2022-06, Vol.40 (12), p.3980-3991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-44231ec72c073ac4b2cfeecff849ed741d0ce2e41f4a09602effc5f93e545e383</citedby><cites>FETCH-LOGICAL-c291t-44231ec72c073ac4b2cfeecff849ed741d0ce2e41f4a09602effc5f93e545e383</cites><orcidid>0000-0002-9711-3452 ; 0000-0003-3873-9743 ; 0000-0002-9166-0455 ; 0000-0002-4471-2865 ; 0000-0001-8287-9597 ; 0000-0002-8685-0924 ; 0000-0001-7243-368X ; 0000-0002-4214-1050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9714866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9714866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuo, Jing</creatorcontrib><creatorcontrib>Jia, Haolong</creatorcontrib><creatorcontrib>Geng, Chao</creatorcontrib><creatorcontrib>Bao, Qiliang</creatorcontrib><creatorcontrib>Zou, Fan</creatorcontrib><creatorcontrib>Li, Ziqiang</creatorcontrib><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Bincheng</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><title>Deep Learning Piston Aberration Control of Fiber Laser Phased Array By Spiral Phase Modulation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The stochastic parallel gradient descent (SPGD) algorithm is usually employed as the control strategy for phase-locking in fiber laser phased array systems. However, the convergence speed of the SPGD algorithm will slow down as the number of array elements increases. To improve the control bandwidth, the convolutional neural network is introduced to quickly calculate the initial piston aberration in a single step. In addition, the irrationality of the commonly used Mean Square Error (MSE) evaluation function in existing convolutional neural networks is analyzed. A new evaluation function NPCD (Normalized Phase Cosine Distance) is proposed to improve the accuracy of the neural networks. The results show that the piston aberration residual is 0.005 and the normalized power in the bucket (PIB) is 0.993 in the simulation and 0.933 in the experiment after accurate preliminary compensation, which means that the system directly enters the co-phase state. We also demonstrate the robustness and scalability by expanding the scale of the array.</description><subject>Aberration</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>evaluation func- tion</subject><subject>fiber laser phased array</subject><subject>Fiber lasers</subject><subject>Laser arrays</subject><subject>Laser beams</subject><subject>Locking</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Phase modulation</subject><subject>phase-locking</subject><subject>Phased arrays</subject><subject>Pistons</subject><subject>Shape</subject><subject>Spirals</subject><subject>Trigonometric functions</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-JiiXOCX0mcYymUh4KoRLliuc4aUoU42Omh_x6XVFx2VqtvdleD0CUlKaWkvHmuVikjjKWcZjRn8ghNaJbJhDHKj9GEFJwnsmDiFJ2FsCGECiGLCfq4A-hxBdp3TfeJl00YXIdna_BeD01s564bvGuxs3jRxDGudIh1-RWlxrOI7fDtDr_1jdftOMYvrt62f_ZzdGJ1G-DioFP0vrhfzR-T6vXhaT6rEsNKOiRCME7BFMzEP7URa2YsgLFWihLqQtCaGGAgqBWalDlhYK3JbMkhExlwyafoetzbe_ezhTCojdv6Lp5ULC8EkYLkLFJkpIx3IXiwqvfNt_Y7RYnap6hiimqfojqkGC1Xo6UBgH-8LKiQec5_AY9-bbg</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Zuo, Jing</creator><creator>Jia, Haolong</creator><creator>Geng, Chao</creator><creator>Bao, Qiliang</creator><creator>Zou, Fan</creator><creator>Li, Ziqiang</creator><creator>Jiang, Jing</creator><creator>Li, Feng</creator><creator>Li, Bincheng</creator><creator>Li, Xinyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9711-3452</orcidid><orcidid>https://orcid.org/0000-0003-3873-9743</orcidid><orcidid>https://orcid.org/0000-0002-9166-0455</orcidid><orcidid>https://orcid.org/0000-0002-4471-2865</orcidid><orcidid>https://orcid.org/0000-0001-8287-9597</orcidid><orcidid>https://orcid.org/0000-0002-8685-0924</orcidid><orcidid>https://orcid.org/0000-0001-7243-368X</orcidid><orcidid>https://orcid.org/0000-0002-4214-1050</orcidid></search><sort><creationdate>20220615</creationdate><title>Deep Learning Piston Aberration Control of Fiber Laser Phased Array By Spiral Phase Modulation</title><author>Zuo, Jing ; Jia, Haolong ; Geng, Chao ; Bao, Qiliang ; Zou, Fan ; Li, Ziqiang ; Jiang, Jing ; Li, Feng ; Li, Bincheng ; Li, Xinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-44231ec72c073ac4b2cfeecff849ed741d0ce2e41f4a09602effc5f93e545e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aberration</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>evaluation func- tion</topic><topic>fiber laser phased array</topic><topic>Fiber lasers</topic><topic>Laser arrays</topic><topic>Laser beams</topic><topic>Locking</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Phase modulation</topic><topic>phase-locking</topic><topic>Phased arrays</topic><topic>Pistons</topic><topic>Shape</topic><topic>Spirals</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Jing</creatorcontrib><creatorcontrib>Jia, Haolong</creatorcontrib><creatorcontrib>Geng, Chao</creatorcontrib><creatorcontrib>Bao, Qiliang</creatorcontrib><creatorcontrib>Zou, Fan</creatorcontrib><creatorcontrib>Li, Ziqiang</creatorcontrib><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Bincheng</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo, Jing</au><au>Jia, Haolong</au><au>Geng, Chao</au><au>Bao, Qiliang</au><au>Zou, Fan</au><au>Li, Ziqiang</au><au>Jiang, Jing</au><au>Li, Feng</au><au>Li, Bincheng</au><au>Li, Xinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Piston Aberration Control of Fiber Laser Phased Array By Spiral Phase Modulation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-06-15</date><risdate>2022</risdate><volume>40</volume><issue>12</issue><spage>3980</spage><epage>3991</epage><pages>3980-3991</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The stochastic parallel gradient descent (SPGD) algorithm is usually employed as the control strategy for phase-locking in fiber laser phased array systems. However, the convergence speed of the SPGD algorithm will slow down as the number of array elements increases. To improve the control bandwidth, the convolutional neural network is introduced to quickly calculate the initial piston aberration in a single step. In addition, the irrationality of the commonly used Mean Square Error (MSE) evaluation function in existing convolutional neural networks is analyzed. A new evaluation function NPCD (Normalized Phase Cosine Distance) is proposed to improve the accuracy of the neural networks. The results show that the piston aberration residual is 0.005 and the normalized power in the bucket (PIB) is 0.993 in the simulation and 0.933 in the experiment after accurate preliminary compensation, which means that the system directly enters the co-phase state. We also demonstrate the robustness and scalability by expanding the scale of the array.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3151628</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9711-3452</orcidid><orcidid>https://orcid.org/0000-0003-3873-9743</orcidid><orcidid>https://orcid.org/0000-0002-9166-0455</orcidid><orcidid>https://orcid.org/0000-0002-4471-2865</orcidid><orcidid>https://orcid.org/0000-0001-8287-9597</orcidid><orcidid>https://orcid.org/0000-0002-8685-0924</orcidid><orcidid>https://orcid.org/0000-0001-7243-368X</orcidid><orcidid>https://orcid.org/0000-0002-4214-1050</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-06, Vol.40 (12), p.3980-3991
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2022_3151628
source IEEE Electronic Library (IEL)
subjects Aberration
Algorithms
Artificial neural networks
Convolutional neural network
Convolutional neural networks
evaluation func- tion
fiber laser phased array
Fiber lasers
Laser arrays
Laser beams
Locking
Machine learning
Neural networks
Phase modulation
phase-locking
Phased arrays
Pistons
Shape
Spirals
Trigonometric functions
title Deep Learning Piston Aberration Control of Fiber Laser Phased Array By Spiral Phase Modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Piston%20Aberration%20Control%20of%20Fiber%20Laser%20Phased%20Array%20By%20Spiral%20Phase%20Modulation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zuo,%20Jing&rft.date=2022-06-15&rft.volume=40&rft.issue=12&rft.spage=3980&rft.epage=3991&rft.pages=3980-3991&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3151628&rft_dat=%3Cproquest_RIE%3E2674084062%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674084062&rft_id=info:pmid/&rft_ieee_id=9714866&rfr_iscdi=true