1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications
Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithm...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-01, Vol.40 (1), p.252-261 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 1 |
container_start_page | 252 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Kong, Lei Cui, Ke Shi, Jiabin Zhu, Ming Li, Simeng |
description | Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR. |
doi_str_mv | 10.1109/JLT.2021.3118394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2021_3118394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9563218</ieee_id><sourcerecordid>2615164412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkv061mprZaWK7XnJZmdtSptdky3qxd_uLi2ehnd43hl4CLkGNgJg6d1zthxxxmEkABKRyhMygDBMAs5BnJIBi4UIkpjLc3Lh_YYxkDKJB-QXHujrWnmkK_vlVNMY-0Hvu1zS2tJ2jfRtr7wJZk7tjLL0RbXOfFNlS_qA2NAMlbN9p6odndsWXYWu3mFHabpoWqPVlk5NgY6-o_U9OW6abbduTW39JTmr1Nbj1XEOyWr6uJw8BdliNp-Ms0DzFNpAhLLgUYKCM6ZLritMNFYxYMmLkpeQQljIItWFlqlCjLgoSuQikSpEUYVMDMnt4W7j6s89-jbf1Htnu5c5jyCESErgHcUOlHa19w6rvHFmp9xPDizvLeed5by3nB8td5WbQ8Ug4j-ehpHgHfAHYc15vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615164412</pqid></control><display><type>article</type><title>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Kong, Lei ; Cui, Ke ; Shi, Jiabin ; Zhu, Ming ; Li, Simeng</creator><creatorcontrib>Kong, Lei ; Cui, Ke ; Shi, Jiabin ; Zhu, Ming ; Li, Simeng</creatorcontrib><description>Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3118394</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Artificial neural networks ; Interferometric fiber sensors ; Interferometry ; Machine learning ; Optical fiber sensors ; Optical fibers ; Optical interferometry ; Phase unwrapping ; phase unwrapping. deep learning ; Phased arrays ; Sensors ; Signal to noise ratio ; Training</subject><ispartof>Journal of lightwave technology, 2022-01, Vol.40 (1), p.252-261</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</citedby><cites>FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</cites><orcidid>0000-0002-3699-5949 ; 0000-0002-8070-3675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9563218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9563218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Lei</creatorcontrib><creatorcontrib>Cui, Ke</creatorcontrib><creatorcontrib>Shi, Jiabin</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><title>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Interferometric fiber sensors</subject><subject>Interferometry</subject><subject>Machine learning</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical interferometry</subject><subject>Phase unwrapping</subject><subject>phase unwrapping. deep learning</subject><subject>Phased arrays</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkv061mprZaWK7XnJZmdtSptdky3qxd_uLi2ehnd43hl4CLkGNgJg6d1zthxxxmEkABKRyhMygDBMAs5BnJIBi4UIkpjLc3Lh_YYxkDKJB-QXHujrWnmkK_vlVNMY-0Hvu1zS2tJ2jfRtr7wJZk7tjLL0RbXOfFNlS_qA2NAMlbN9p6odndsWXYWu3mFHabpoWqPVlk5NgY6-o_U9OW6abbduTW39JTmr1Nbj1XEOyWr6uJw8BdliNp-Ms0DzFNpAhLLgUYKCM6ZLritMNFYxYMmLkpeQQljIItWFlqlCjLgoSuQikSpEUYVMDMnt4W7j6s89-jbf1Htnu5c5jyCESErgHcUOlHa19w6rvHFmp9xPDizvLeed5by3nB8td5WbQ8Ug4j-ehpHgHfAHYc15vQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Kong, Lei</creator><creator>Cui, Ke</creator><creator>Shi, Jiabin</creator><creator>Zhu, Ming</creator><creator>Li, Simeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3699-5949</orcidid><orcidid>https://orcid.org/0000-0002-8070-3675</orcidid></search><sort><creationdate>20220101</creationdate><title>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</title><author>Kong, Lei ; Cui, Ke ; Shi, Jiabin ; Zhu, Ming ; Li, Simeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Interferometric fiber sensors</topic><topic>Interferometry</topic><topic>Machine learning</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical interferometry</topic><topic>Phase unwrapping</topic><topic>phase unwrapping. deep learning</topic><topic>Phased arrays</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Lei</creatorcontrib><creatorcontrib>Cui, Ke</creatorcontrib><creatorcontrib>Shi, Jiabin</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Lei</au><au>Cui, Ke</au><au>Shi, Jiabin</au><au>Zhu, Ming</au><au>Li, Simeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>252</spage><epage>261</epage><pages>252-261</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3118394</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3699-5949</orcidid><orcidid>https://orcid.org/0000-0002-8070-3675</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-01, Vol.40 (1), p.252-261 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2021_3118394 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Arrays Artificial neural networks Interferometric fiber sensors Interferometry Machine learning Optical fiber sensors Optical fibers Optical interferometry Phase unwrapping phase unwrapping. deep learning Phased arrays Sensors Signal to noise ratio Training |
title | 1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D%20Phase%20Unwrapping%20Based%20on%20the%20Quasi-Gramian%20Matrix%20and%20Deep%20Learning%20for%20Interferometric%20Optical%20Fiber%20Sensing%20Applications&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Kong,%20Lei&rft.date=2022-01-01&rft.volume=40&rft.issue=1&rft.spage=252&rft.epage=261&rft.pages=252-261&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3118394&rft_dat=%3Cproquest_RIE%3E2615164412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615164412&rft_id=info:pmid/&rft_ieee_id=9563218&rfr_iscdi=true |