1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications

Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2022-01, Vol.40 (1), p.252-261
Hauptverfasser: Kong, Lei, Cui, Ke, Shi, Jiabin, Zhu, Ming, Li, Simeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 1
container_start_page 252
container_title Journal of lightwave technology
container_volume 40
creator Kong, Lei
Cui, Ke
Shi, Jiabin
Zhu, Ming
Li, Simeng
description Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.
doi_str_mv 10.1109/JLT.2021.3118394
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2021_3118394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9563218</ieee_id><sourcerecordid>2615164412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkv061mprZaWK7XnJZmdtSptdky3qxd_uLi2ehnd43hl4CLkGNgJg6d1zthxxxmEkABKRyhMygDBMAs5BnJIBi4UIkpjLc3Lh_YYxkDKJB-QXHujrWnmkK_vlVNMY-0Hvu1zS2tJ2jfRtr7wJZk7tjLL0RbXOfFNlS_qA2NAMlbN9p6odndsWXYWu3mFHabpoWqPVlk5NgY6-o_U9OW6abbduTW39JTmr1Nbj1XEOyWr6uJw8BdliNp-Ms0DzFNpAhLLgUYKCM6ZLritMNFYxYMmLkpeQQljIItWFlqlCjLgoSuQikSpEUYVMDMnt4W7j6s89-jbf1Htnu5c5jyCESErgHcUOlHa19w6rvHFmp9xPDizvLeed5by3nB8td5WbQ8Ug4j-ehpHgHfAHYc15vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615164412</pqid></control><display><type>article</type><title>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Kong, Lei ; Cui, Ke ; Shi, Jiabin ; Zhu, Ming ; Li, Simeng</creator><creatorcontrib>Kong, Lei ; Cui, Ke ; Shi, Jiabin ; Zhu, Ming ; Li, Simeng</creatorcontrib><description>Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3118394</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Artificial neural networks ; Interferometric fiber sensors ; Interferometry ; Machine learning ; Optical fiber sensors ; Optical fibers ; Optical interferometry ; Phase unwrapping ; phase unwrapping. deep learning ; Phased arrays ; Sensors ; Signal to noise ratio ; Training</subject><ispartof>Journal of lightwave technology, 2022-01, Vol.40 (1), p.252-261</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</citedby><cites>FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</cites><orcidid>0000-0002-3699-5949 ; 0000-0002-8070-3675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9563218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9563218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Lei</creatorcontrib><creatorcontrib>Cui, Ke</creatorcontrib><creatorcontrib>Shi, Jiabin</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><title>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Interferometric fiber sensors</subject><subject>Interferometry</subject><subject>Machine learning</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical interferometry</subject><subject>Phase unwrapping</subject><subject>phase unwrapping. deep learning</subject><subject>Phased arrays</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZMkv061mprZaWK7XnJZmdtSptdky3qxd_uLi2ehnd43hl4CLkGNgJg6d1zthxxxmEkABKRyhMygDBMAs5BnJIBi4UIkpjLc3Lh_YYxkDKJB-QXHujrWnmkK_vlVNMY-0Hvu1zS2tJ2jfRtr7wJZk7tjLL0RbXOfFNlS_qA2NAMlbN9p6odndsWXYWu3mFHabpoWqPVlk5NgY6-o_U9OW6abbduTW39JTmr1Nbj1XEOyWr6uJw8BdliNp-Ms0DzFNpAhLLgUYKCM6ZLritMNFYxYMmLkpeQQljIItWFlqlCjLgoSuQikSpEUYVMDMnt4W7j6s89-jbf1Htnu5c5jyCESErgHcUOlHa19w6rvHFmp9xPDizvLeed5by3nB8td5WbQ8Ug4j-ehpHgHfAHYc15vQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Kong, Lei</creator><creator>Cui, Ke</creator><creator>Shi, Jiabin</creator><creator>Zhu, Ming</creator><creator>Li, Simeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3699-5949</orcidid><orcidid>https://orcid.org/0000-0002-8070-3675</orcidid></search><sort><creationdate>20220101</creationdate><title>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</title><author>Kong, Lei ; Cui, Ke ; Shi, Jiabin ; Zhu, Ming ; Li, Simeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-354b268e3200cd2cfe8cef71ed2bd2d1915b4b9cbc49aee623bde2384a5e3f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Interferometric fiber sensors</topic><topic>Interferometry</topic><topic>Machine learning</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical interferometry</topic><topic>Phase unwrapping</topic><topic>phase unwrapping. deep learning</topic><topic>Phased arrays</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Lei</creatorcontrib><creatorcontrib>Cui, Ke</creatorcontrib><creatorcontrib>Shi, Jiabin</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Li, Simeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Lei</au><au>Cui, Ke</au><au>Shi, Jiabin</au><au>Zhu, Ming</au><au>Li, Simeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>252</spage><epage>261</epage><pages>252-261</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Phase unwrapping is one of the key problems in interferometric fiber sensors, which usually acts as the system performance bottleneck. Compared with the two-dimensional phase unwrapping, the one-dimensional phase unwrapping suffers more seriously from noise. Because modern phase unwrapping algorithms need to make the best use of all the adjacent phase points when evaluating the true phase at a given point. But the available adjacent points in one-dimensional phase unwrapping are very limited. A two-step one-dimensional phase unwrapping algorithm is proposed in this work to combat the above problems. In the first step, the one-dimensional phase is encoded into two-dimensional array based on the quasi-Gramian matrix, and in the second step the deep convolutional neural network (DCNN) is adopted for phase unwrapping. Both simulation and actual experiment results show that the unwrapped phase quality by using our method obviously outperforms the traditional methods with the signal-to-noise ratio (SNR) of lower than 4 dB, and it can still work stably even for negative SNR.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3118394</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3699-5949</orcidid><orcidid>https://orcid.org/0000-0002-8070-3675</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-01, Vol.40 (1), p.252-261
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2021_3118394
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrays
Artificial neural networks
Interferometric fiber sensors
Interferometry
Machine learning
Optical fiber sensors
Optical fibers
Optical interferometry
Phase unwrapping
phase unwrapping. deep learning
Phased arrays
Sensors
Signal to noise ratio
Training
title 1D Phase Unwrapping Based on the Quasi-Gramian Matrix and Deep Learning for Interferometric Optical Fiber Sensing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D%20Phase%20Unwrapping%20Based%20on%20the%20Quasi-Gramian%20Matrix%20and%20Deep%20Learning%20for%20Interferometric%20Optical%20Fiber%20Sensing%20Applications&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Kong,%20Lei&rft.date=2022-01-01&rft.volume=40&rft.issue=1&rft.spage=252&rft.epage=261&rft.pages=252-261&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3118394&rft_dat=%3Cproquest_RIE%3E2615164412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615164412&rft_id=info:pmid/&rft_ieee_id=9563218&rfr_iscdi=true