Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform
Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much i...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-09, Vol.39 (17), p.5459-5467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5467 |
---|---|
container_issue | 17 |
container_start_page | 5459 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Zhou, Gai Sun, Lin Lu, Chao Lau, Alan Pak Tao |
description | Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue {\boldsymbol{\lambda }} and {\boldsymbol{b}}-coefficents {\boldsymbol{b}}({\boldsymbol{\lambda }}) and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and {\boldsymbol{b}}-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both {\boldsymbol{\lambda }} and {\boldsymbol{b}}({\boldsymbol{\lambda }}) of pairs of 1-solitons so that the mean value of {\boldsymbol{\lambda }} for solitons with odd index is {\boldsymbol{\alpha }} + 1{\boldsymbol{i}} while it is - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}} for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue {\boldsymbol{\lambda }} using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in {\boldsymbol{b}}({\boldsymbol{\lambd |
doi_str_mv | 10.1109/JLT.2021.3084825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2021_3084825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444143</ieee_id><sourcerecordid>2572663161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJoZs090Avgh6LN5JGlqVjs_lmkxayORutMt4qeKVUslsC_fHR4pBcexodnmfQ-w4hR5zNOWfm-Hq5mgsm-ByYllrUH8iM17WuhOCwR2asAah0I-Qnsp_zI2NcSt3MyL-bsR98dfe8XceenvqNH2xP7_wmlPEzRYc5-7ChK3S_gv89YqZdTAXMLuGA9MxvMPyx_Yh0lWzIW1_4GDI9sRkfaAz0NobeB7SJnscxeUwTWLZsP5OPne0zHr7OA3J_frZaXFbLHxdXi-_LygHAUGnLrSiZrASrWOfWukNpNUqjHtCi5rLToA1Aw8B0aGrlcI2NrGtnHLcKDsjXae9TirsIQ_tYvlIS5lbUjVAKuOKFYhPlUsw5Ydc-Jb-16bnlrN113JaO213H7WvHRfk2KX9xHbvsPAaHbxpjTBnFGiPKi0Oh9f_Ti3KIoTS5iGMYivplUj3iu2KklFwCvADU6pqi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572663161</pqid></control><display><type>article</type><title>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Gai ; Sun, Lin ; Lu, Chao ; Lau, Alan Pak Tao</creator><creatorcontrib>Zhou, Gai ; Sun, Lin ; Lu, Chao ; Lau, Alan Pak Tao</creatorcontrib><description><![CDATA[Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> of pairs of 1-solitons so that the mean value of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> for solitons with odd index is <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> while it is <inline-formula><tex-math notation="LaTeX"> - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> using discrete eigenvalue noise and 4) approximate the received signal distributions of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> as Gaussians with mean and covariance matrices obtained empirically from experiments followed by Maximum Likelihood (ML) detection for each symbol or multi-symbol (MS)-joint ML detection of 2-soliton signals. We jointly modulate <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> with 16-QAM and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> with 16-APSK and a record single-polarization discrete eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is experimentally demonstrated with the proposed multi-symbol DSP algorithms.]]></description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3084825</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Computer networks ; Covariance matrix ; Digital signal processing ; Eigenvalues ; Eigenvalues and eigenfunctions ; Engineering ; Engineering, Electrical & Electronic ; Fourier transforms ; Interference ; Modulation ; Noise ; Nonlinear optics ; Optical communication ; optical communications ; Optical fiber communication ; Optical fibers ; Optics ; Performance degradation ; Physical Sciences ; Receivers ; Science & Technology ; Signal processing ; Solitary waves ; Solitons ; Technology ; Telecommunications ; Transceivers ; Waveforms ; Windows (intervals)</subject><ispartof>Journal of lightwave technology, 2021-09, Vol.39 (17), p.5459-5467</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>22</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000696079200013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</citedby><cites>FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</cites><orcidid>0000-0002-9469-6672 ; 0000-0002-5725-180X ; 0000-0001-6278-5964 ; 0000-0003-0463-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,39265,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Gai</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><title>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><addtitle>J LIGHTWAVE TECHNOL</addtitle><description><![CDATA[Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> of pairs of 1-solitons so that the mean value of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> for solitons with odd index is <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> while it is <inline-formula><tex-math notation="LaTeX"> - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> using discrete eigenvalue noise and 4) approximate the received signal distributions of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> as Gaussians with mean and covariance matrices obtained empirically from experiments followed by Maximum Likelihood (ML) detection for each symbol or multi-symbol (MS)-joint ML detection of 2-soliton signals. We jointly modulate <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> with 16-QAM and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> with 16-APSK and a record single-polarization discrete eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is experimentally demonstrated with the proposed multi-symbol DSP algorithms.]]></description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Covariance matrix</subject><subject>Digital signal processing</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Fourier transforms</subject><subject>Interference</subject><subject>Modulation</subject><subject>Noise</subject><subject>Nonlinear optics</subject><subject>Optical communication</subject><subject>optical communications</subject><subject>Optical fiber communication</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Performance degradation</subject><subject>Physical Sciences</subject><subject>Receivers</subject><subject>Science & Technology</subject><subject>Signal processing</subject><subject>Solitary waves</subject><subject>Solitons</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Transceivers</subject><subject>Waveforms</subject><subject>Windows (intervals)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkU1r3DAQhkVJoZs090Avgh6LN5JGlqVjs_lmkxayORutMt4qeKVUslsC_fHR4pBcexodnmfQ-w4hR5zNOWfm-Hq5mgsm-ByYllrUH8iM17WuhOCwR2asAah0I-Qnsp_zI2NcSt3MyL-bsR98dfe8XceenvqNH2xP7_wmlPEzRYc5-7ChK3S_gv89YqZdTAXMLuGA9MxvMPyx_Yh0lWzIW1_4GDI9sRkfaAz0NobeB7SJnscxeUwTWLZsP5OPne0zHr7OA3J_frZaXFbLHxdXi-_LygHAUGnLrSiZrASrWOfWukNpNUqjHtCi5rLToA1Aw8B0aGrlcI2NrGtnHLcKDsjXae9TirsIQ_tYvlIS5lbUjVAKuOKFYhPlUsw5Ydc-Jb-16bnlrN113JaO213H7WvHRfk2KX9xHbvsPAaHbxpjTBnFGiPKi0Oh9f_Ti3KIoTS5iGMYivplUj3iu2KklFwCvADU6pqi</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhou, Gai</creator><creator>Sun, Lin</creator><creator>Lu, Chao</creator><creator>Lau, Alan Pak Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9469-6672</orcidid><orcidid>https://orcid.org/0000-0002-5725-180X</orcidid><orcidid>https://orcid.org/0000-0001-6278-5964</orcidid><orcidid>https://orcid.org/0000-0003-0463-5057</orcidid></search><sort><creationdate>20210901</creationdate><title>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</title><author>Zhou, Gai ; Sun, Lin ; Lu, Chao ; Lau, Alan Pak Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Covariance matrix</topic><topic>Digital signal processing</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Fourier transforms</topic><topic>Interference</topic><topic>Modulation</topic><topic>Noise</topic><topic>Nonlinear optics</topic><topic>Optical communication</topic><topic>optical communications</topic><topic>Optical fiber communication</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Performance degradation</topic><topic>Physical Sciences</topic><topic>Receivers</topic><topic>Science & Technology</topic><topic>Signal processing</topic><topic>Solitary waves</topic><topic>Solitons</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Transceivers</topic><topic>Waveforms</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Gai</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Gai</au><au>Sun, Lin</au><au>Lu, Chao</au><au>Lau, Alan Pak Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><stitle>J LIGHTWAVE TECHNOL</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>39</volume><issue>17</issue><spage>5459</spage><epage>5467</epage><pages>5459-5467</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract><![CDATA[Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> of pairs of 1-solitons so that the mean value of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> for solitons with odd index is <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> while it is <inline-formula><tex-math notation="LaTeX"> - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> using discrete eigenvalue noise and 4) approximate the received signal distributions of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> as Gaussians with mean and covariance matrices obtained empirically from experiments followed by Maximum Likelihood (ML) detection for each symbol or multi-symbol (MS)-joint ML detection of 2-soliton signals. We jointly modulate <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> with 16-QAM and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> with 16-APSK and a record single-polarization discrete eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is experimentally demonstrated with the proposed multi-symbol DSP algorithms.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3084825</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9469-6672</orcidid><orcidid>https://orcid.org/0000-0002-5725-180X</orcidid><orcidid>https://orcid.org/0000-0001-6278-5964</orcidid><orcidid>https://orcid.org/0000-0003-0463-5057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-09, Vol.39 (17), p.5459-5467 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2021_3084825 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computer networks Covariance matrix Digital signal processing Eigenvalues Eigenvalues and eigenfunctions Engineering Engineering, Electrical & Electronic Fourier transforms Interference Modulation Noise Nonlinear optics Optical communication optical communications Optical fiber communication Optical fibers Optics Performance degradation Physical Sciences Receivers Science & Technology Signal processing Solitary waves Solitons Technology Telecommunications Transceivers Waveforms Windows (intervals) |
title | Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Symbol%20Digital%20Signal%20Processing%20Techniques%20for%20Discrete%20Eigenvalue%20Transmissions%20Based%20on%20Nonlinear%20Fourier%20Transform&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zhou,%20Gai&rft.date=2021-09-01&rft.volume=39&rft.issue=17&rft.spage=5459&rft.epage=5467&rft.pages=5459-5467&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3084825&rft_dat=%3Cproquest_RIE%3E2572663161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572663161&rft_id=info:pmid/&rft_ieee_id=9444143&rfr_iscdi=true |