Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform

Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-09, Vol.39 (17), p.5459-5467
Hauptverfasser: Zhou, Gai, Sun, Lin, Lu, Chao, Lau, Alan Pak Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5467
container_issue 17
container_start_page 5459
container_title Journal of lightwave technology
container_volume 39
creator Zhou, Gai
Sun, Lin
Lu, Chao
Lau, Alan Pak Tao
description Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue {\boldsymbol{\lambda }} and {\boldsymbol{b}}-coefficents {\boldsymbol{b}}({\boldsymbol{\lambda }}) and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and {\boldsymbol{b}}-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both {\boldsymbol{\lambda }} and {\boldsymbol{b}}({\boldsymbol{\lambda }}) of pairs of 1-solitons so that the mean value of {\boldsymbol{\lambda }} for solitons with odd index is {\boldsymbol{\alpha }} + 1{\boldsymbol{i}} while it is - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}} for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue {\boldsymbol{\lambda }} using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in {\boldsymbol{b}}({\boldsymbol{\lambd
doi_str_mv 10.1109/JLT.2021.3084825
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2021_3084825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444143</ieee_id><sourcerecordid>2572663161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJoZs090Avgh6LN5JGlqVjs_lmkxayORutMt4qeKVUslsC_fHR4pBcexodnmfQ-w4hR5zNOWfm-Hq5mgsm-ByYllrUH8iM17WuhOCwR2asAah0I-Qnsp_zI2NcSt3MyL-bsR98dfe8XceenvqNH2xP7_wmlPEzRYc5-7ChK3S_gv89YqZdTAXMLuGA9MxvMPyx_Yh0lWzIW1_4GDI9sRkfaAz0NobeB7SJnscxeUwTWLZsP5OPne0zHr7OA3J_frZaXFbLHxdXi-_LygHAUGnLrSiZrASrWOfWukNpNUqjHtCi5rLToA1Aw8B0aGrlcI2NrGtnHLcKDsjXae9TirsIQ_tYvlIS5lbUjVAKuOKFYhPlUsw5Ydc-Jb-16bnlrN113JaO213H7WvHRfk2KX9xHbvsPAaHbxpjTBnFGiPKi0Oh9f_Ti3KIoTS5iGMYivplUj3iu2KklFwCvADU6pqi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572663161</pqid></control><display><type>article</type><title>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Gai ; Sun, Lin ; Lu, Chao ; Lau, Alan Pak Tao</creator><creatorcontrib>Zhou, Gai ; Sun, Lin ; Lu, Chao ; Lau, Alan Pak Tao</creatorcontrib><description><![CDATA[Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> of pairs of 1-solitons so that the mean value of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> for solitons with odd index is <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> while it is <inline-formula><tex-math notation="LaTeX"> - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> using discrete eigenvalue noise and 4) approximate the received signal distributions of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> as Gaussians with mean and covariance matrices obtained empirically from experiments followed by Maximum Likelihood (ML) detection for each symbol or multi-symbol (MS)-joint ML detection of 2-soliton signals. We jointly modulate <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> with 16-QAM and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> with 16-APSK and a record single-polarization discrete eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is experimentally demonstrated with the proposed multi-symbol DSP algorithms.]]></description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3084825</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Computer networks ; Covariance matrix ; Digital signal processing ; Eigenvalues ; Eigenvalues and eigenfunctions ; Engineering ; Engineering, Electrical &amp; Electronic ; Fourier transforms ; Interference ; Modulation ; Noise ; Nonlinear optics ; Optical communication ; optical communications ; Optical fiber communication ; Optical fibers ; Optics ; Performance degradation ; Physical Sciences ; Receivers ; Science &amp; Technology ; Signal processing ; Solitary waves ; Solitons ; Technology ; Telecommunications ; Transceivers ; Waveforms ; Windows (intervals)</subject><ispartof>Journal of lightwave technology, 2021-09, Vol.39 (17), p.5459-5467</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>22</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000696079200013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</citedby><cites>FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</cites><orcidid>0000-0002-9469-6672 ; 0000-0002-5725-180X ; 0000-0001-6278-5964 ; 0000-0003-0463-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,39265,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Gai</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><title>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><addtitle>J LIGHTWAVE TECHNOL</addtitle><description><![CDATA[Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> of pairs of 1-solitons so that the mean value of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> for solitons with odd index is <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> while it is <inline-formula><tex-math notation="LaTeX"> - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> using discrete eigenvalue noise and 4) approximate the received signal distributions of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> as Gaussians with mean and covariance matrices obtained empirically from experiments followed by Maximum Likelihood (ML) detection for each symbol or multi-symbol (MS)-joint ML detection of 2-soliton signals. We jointly modulate <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> with 16-QAM and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> with 16-APSK and a record single-polarization discrete eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is experimentally demonstrated with the proposed multi-symbol DSP algorithms.]]></description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Covariance matrix</subject><subject>Digital signal processing</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Fourier transforms</subject><subject>Interference</subject><subject>Modulation</subject><subject>Noise</subject><subject>Nonlinear optics</subject><subject>Optical communication</subject><subject>optical communications</subject><subject>Optical fiber communication</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Performance degradation</subject><subject>Physical Sciences</subject><subject>Receivers</subject><subject>Science &amp; Technology</subject><subject>Signal processing</subject><subject>Solitary waves</subject><subject>Solitons</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Transceivers</subject><subject>Waveforms</subject><subject>Windows (intervals)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkU1r3DAQhkVJoZs090Avgh6LN5JGlqVjs_lmkxayORutMt4qeKVUslsC_fHR4pBcexodnmfQ-w4hR5zNOWfm-Hq5mgsm-ByYllrUH8iM17WuhOCwR2asAah0I-Qnsp_zI2NcSt3MyL-bsR98dfe8XceenvqNH2xP7_wmlPEzRYc5-7ChK3S_gv89YqZdTAXMLuGA9MxvMPyx_Yh0lWzIW1_4GDI9sRkfaAz0NobeB7SJnscxeUwTWLZsP5OPne0zHr7OA3J_frZaXFbLHxdXi-_LygHAUGnLrSiZrASrWOfWukNpNUqjHtCi5rLToA1Aw8B0aGrlcI2NrGtnHLcKDsjXae9TirsIQ_tYvlIS5lbUjVAKuOKFYhPlUsw5Ydc-Jb-16bnlrN113JaO213H7WvHRfk2KX9xHbvsPAaHbxpjTBnFGiPKi0Oh9f_Ti3KIoTS5iGMYivplUj3iu2KklFwCvADU6pqi</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhou, Gai</creator><creator>Sun, Lin</creator><creator>Lu, Chao</creator><creator>Lau, Alan Pak Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9469-6672</orcidid><orcidid>https://orcid.org/0000-0002-5725-180X</orcidid><orcidid>https://orcid.org/0000-0001-6278-5964</orcidid><orcidid>https://orcid.org/0000-0003-0463-5057</orcidid></search><sort><creationdate>20210901</creationdate><title>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</title><author>Zhou, Gai ; Sun, Lin ; Lu, Chao ; Lau, Alan Pak Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8a1a2482a43a60fcb8fe4a8e496deae814f8389337039fe956cebe7455c9c1a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Covariance matrix</topic><topic>Digital signal processing</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Fourier transforms</topic><topic>Interference</topic><topic>Modulation</topic><topic>Noise</topic><topic>Nonlinear optics</topic><topic>Optical communication</topic><topic>optical communications</topic><topic>Optical fiber communication</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Performance degradation</topic><topic>Physical Sciences</topic><topic>Receivers</topic><topic>Science &amp; Technology</topic><topic>Signal processing</topic><topic>Solitary waves</topic><topic>Solitons</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Transceivers</topic><topic>Waveforms</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Gai</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><creatorcontrib>Lau, Alan Pak Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Gai</au><au>Sun, Lin</au><au>Lu, Chao</au><au>Lau, Alan Pak Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><stitle>J LIGHTWAVE TECHNOL</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>39</volume><issue>17</issue><spage>5459</spage><epage>5467</epage><pages>5459-5467</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract><![CDATA[Optical communications based on Nonlinear Fourier Transform (NFT) and digital coherent transceivers are proposed as a new theoretical framework for communications over the nonlinear optical fiber channel. For discrete eigenvalue transmissions (or soliton transmissions), one seeks to encode as much information as possible in each degree of freedom and shorten the distance between neighboring pulses to increase the overall bit rate. However, such attempts would result in nonlinear inter-symbol interference (ISI) across multiple symbols and significantly degrade transmission performance. In this paper, we investigated joint modulation of discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> and developed a suite of multi-symbol digital signal processing (DSP) techniques to exploit the statistical correlations between the continuous and discrete eigenvalues and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}</tex-math></inline-formula>-coefficents to mitigate nonlinear distortions and improve detection performance. This include 1) jointly modulating both <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> of pairs of 1-solitons so that the mean value of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> for solitons with odd index is <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> while it is <inline-formula><tex-math notation="LaTeX"> - {\boldsymbol{\alpha }} + 1{\boldsymbol{i}}</tex-math></inline-formula> for solitons with even index. This is followed by decoding superimposed received waveforms as 2-solitons with twice the INFT processing time window; 2) linear minimum mean squared error (LMMSE) estimation filters to mitigate noise in discrete eigenvalue <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> using continuous eigenvalue; 3) multi-symbol (MS) LMMSE filters to mitigate noise in <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> using discrete eigenvalue noise and 4) approximate the received signal distributions of <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> as Gaussians with mean and covariance matrices obtained empirically from experiments followed by Maximum Likelihood (ML) detection for each symbol or multi-symbol (MS)-joint ML detection of 2-soliton signals. We jointly modulate <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\lambda }}</tex-math></inline-formula> with 16-QAM and <inline-formula><tex-math notation="LaTeX">{\boldsymbol{b}}({\boldsymbol{\lambda }})</tex-math></inline-formula> with 16-APSK and a record single-polarization discrete eigenvalue transmission of 64 Gb/s (net 54 Gb/s) over 1200 km is experimentally demonstrated with the proposed multi-symbol DSP algorithms.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3084825</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9469-6672</orcidid><orcidid>https://orcid.org/0000-0002-5725-180X</orcidid><orcidid>https://orcid.org/0000-0001-6278-5964</orcidid><orcidid>https://orcid.org/0000-0003-0463-5057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-09, Vol.39 (17), p.5459-5467
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2021_3084825
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer networks
Covariance matrix
Digital signal processing
Eigenvalues
Eigenvalues and eigenfunctions
Engineering
Engineering, Electrical & Electronic
Fourier transforms
Interference
Modulation
Noise
Nonlinear optics
Optical communication
optical communications
Optical fiber communication
Optical fibers
Optics
Performance degradation
Physical Sciences
Receivers
Science & Technology
Signal processing
Solitary waves
Solitons
Technology
Telecommunications
Transceivers
Waveforms
Windows (intervals)
title Multi-Symbol Digital Signal Processing Techniques for Discrete Eigenvalue Transmissions Based on Nonlinear Fourier Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Symbol%20Digital%20Signal%20Processing%20Techniques%20for%20Discrete%20Eigenvalue%20Transmissions%20Based%20on%20Nonlinear%20Fourier%20Transform&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zhou,%20Gai&rft.date=2021-09-01&rft.volume=39&rft.issue=17&rft.spage=5459&rft.epage=5467&rft.pages=5459-5467&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3084825&rft_dat=%3Cproquest_RIE%3E2572663161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572663161&rft_id=info:pmid/&rft_ieee_id=9444143&rfr_iscdi=true