Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber

A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-04, Vol.39 (8), p.2522-2527
Hauptverfasser: Zhang, Jiaming, Guan, Chunying, Jin, Yuan, Ye, Peng, Cheng, Tailei, Yang, Jing, Tian, Peixuan, Zhu, Zheng, Shi, Jinhui, Yang, Jun, Yuan, Libo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2527
container_issue 8
container_start_page 2522
container_title Journal of lightwave technology
container_volume 39
creator Zhang, Jiaming
Guan, Chunying
Jin, Yuan
Ye, Peng
Cheng, Tailei
Yang, Jing
Tian, Peixuan
Zhu, Zheng
Shi, Jinhui
Yang, Jun
Yuan, Libo
description A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.
doi_str_mv 10.1109/JLT.2021.3050323
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2021_3050323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9317841</ieee_id><sourcerecordid>2505611931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nNW5yUSQ-hyy5hY6tqYmreh_b8aGL_cDzvndy0HoltEZY1Q_vK6rGaeczQTNqODiDE1YlhWEcybO0YQqIUihuLxEVzFuKWVSFmqCthXsewh2GANg2zn8AU2w9dB-A151Dn7IofaQSjfgN-8Al777hjBAwI82gsO-w5VNjDQu_Q7IPMY2Dml7Gu2OlD6BF-0GwjW6aOwuws2pT9Hn4rkql2T9_rIq52tSc80GwlTNc10z17iicaqQXGykdjR3WjOta1dowZ2qG82lhVpL5ZQDIZWkVORJPUX3R24f_NcIcTBbP4YunTQ8o1nOmBYsqehRVQcfY4DG9KHd2_BrGDWHRE1K1BwSNadEk-XuaGkB4F-eYOlJJv4Ab_ZxHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505611931</pqid></control><display><type>article</type><title>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jiaming ; Guan, Chunying ; Jin, Yuan ; Ye, Peng ; Cheng, Tailei ; Yang, Jing ; Tian, Peixuan ; Zhu, Zheng ; Shi, Jinhui ; Yang, Jun ; Yuan, Libo</creator><creatorcontrib>Zhang, Jiaming ; Guan, Chunying ; Jin, Yuan ; Ye, Peng ; Cheng, Tailei ; Yang, Jing ; Tian, Peixuan ; Zhu, Zheng ; Shi, Jinhui ; Yang, Jun ; Yuan, Libo</creatorcontrib><description>A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3050323</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>C band ; Converters ; dual-core fiber ; Eccentricity ; hole-assisted fiber ; Length measurement ; Mode converter (MC) ; mode coupling ; Optical fiber devices ; Optical fiber dispersion ; Optical fiber polarization ; Phase matching ; Refractive index ; Refractivity ; Splicing ; Temperature measurement ; Wavelength measurement</subject><ispartof>Journal of lightwave technology, 2021-04, Vol.39 (8), p.2522-2527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</citedby><cites>FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</cites><orcidid>0000-0002-2425-4553 ; 0000-0001-8692-7605 ; 0000-0002-7701-8247 ; 0000-0002-6805-4289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9317841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9317841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jiaming</creatorcontrib><creatorcontrib>Guan, Chunying</creatorcontrib><creatorcontrib>Jin, Yuan</creatorcontrib><creatorcontrib>Ye, Peng</creatorcontrib><creatorcontrib>Cheng, Tailei</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Tian, Peixuan</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Shi, Jinhui</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yuan, Libo</creatorcontrib><title>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.</description><subject>C band</subject><subject>Converters</subject><subject>dual-core fiber</subject><subject>Eccentricity</subject><subject>hole-assisted fiber</subject><subject>Length measurement</subject><subject>Mode converter (MC)</subject><subject>mode coupling</subject><subject>Optical fiber devices</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber polarization</subject><subject>Phase matching</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Splicing</subject><subject>Temperature measurement</subject><subject>Wavelength measurement</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nNW5yUSQ-hyy5hY6tqYmreh_b8aGL_cDzvndy0HoltEZY1Q_vK6rGaeczQTNqODiDE1YlhWEcybO0YQqIUihuLxEVzFuKWVSFmqCthXsewh2GANg2zn8AU2w9dB-A151Dn7IofaQSjfgN-8Al777hjBAwI82gsO-w5VNjDQu_Q7IPMY2Dml7Gu2OlD6BF-0GwjW6aOwuws2pT9Hn4rkql2T9_rIq52tSc80GwlTNc10z17iicaqQXGykdjR3WjOta1dowZ2qG82lhVpL5ZQDIZWkVORJPUX3R24f_NcIcTBbP4YunTQ8o1nOmBYsqehRVQcfY4DG9KHd2_BrGDWHRE1K1BwSNadEk-XuaGkB4F-eYOlJJv4Ab_ZxHg</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Zhang, Jiaming</creator><creator>Guan, Chunying</creator><creator>Jin, Yuan</creator><creator>Ye, Peng</creator><creator>Cheng, Tailei</creator><creator>Yang, Jing</creator><creator>Tian, Peixuan</creator><creator>Zhu, Zheng</creator><creator>Shi, Jinhui</creator><creator>Yang, Jun</creator><creator>Yuan, Libo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2425-4553</orcidid><orcidid>https://orcid.org/0000-0001-8692-7605</orcidid><orcidid>https://orcid.org/0000-0002-7701-8247</orcidid><orcidid>https://orcid.org/0000-0002-6805-4289</orcidid></search><sort><creationdate>20210415</creationdate><title>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</title><author>Zhang, Jiaming ; Guan, Chunying ; Jin, Yuan ; Ye, Peng ; Cheng, Tailei ; Yang, Jing ; Tian, Peixuan ; Zhu, Zheng ; Shi, Jinhui ; Yang, Jun ; Yuan, Libo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C band</topic><topic>Converters</topic><topic>dual-core fiber</topic><topic>Eccentricity</topic><topic>hole-assisted fiber</topic><topic>Length measurement</topic><topic>Mode converter (MC)</topic><topic>mode coupling</topic><topic>Optical fiber devices</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber polarization</topic><topic>Phase matching</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Splicing</topic><topic>Temperature measurement</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiaming</creatorcontrib><creatorcontrib>Guan, Chunying</creatorcontrib><creatorcontrib>Jin, Yuan</creatorcontrib><creatorcontrib>Ye, Peng</creatorcontrib><creatorcontrib>Cheng, Tailei</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Tian, Peixuan</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Shi, Jinhui</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yuan, Libo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jiaming</au><au>Guan, Chunying</au><au>Jin, Yuan</au><au>Ye, Peng</au><au>Cheng, Tailei</au><au>Yang, Jing</au><au>Tian, Peixuan</au><au>Zhu, Zheng</au><au>Shi, Jinhui</au><au>Yang, Jun</au><au>Yuan, Libo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>39</volume><issue>8</issue><spage>2522</spage><epage>2527</epage><pages>2522-2527</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3050323</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2425-4553</orcidid><orcidid>https://orcid.org/0000-0001-8692-7605</orcidid><orcidid>https://orcid.org/0000-0002-7701-8247</orcidid><orcidid>https://orcid.org/0000-0002-6805-4289</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-04, Vol.39 (8), p.2522-2527
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2021_3050323
source IEEE Electronic Library (IEL)
subjects C band
Converters
dual-core fiber
Eccentricity
hole-assisted fiber
Length measurement
Mode converter (MC)
mode coupling
Optical fiber devices
Optical fiber dispersion
Optical fiber polarization
Phase matching
Refractive index
Refractivity
Splicing
Temperature measurement
Wavelength measurement
title Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20and%20Refractive%20Index-Independent%20Mode%20Converter%20Based%20on%20Tapered%20Hole-Assisted%20Dual-Core%20Fiber&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zhang,%20Jiaming&rft.date=2021-04-15&rft.volume=39&rft.issue=8&rft.spage=2522&rft.epage=2527&rft.pages=2522-2527&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3050323&rft_dat=%3Cproquest_RIE%3E2505611931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505611931&rft_id=info:pmid/&rft_ieee_id=9317841&rfr_iscdi=true