Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber
A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-04, Vol.39 (8), p.2522-2527 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2527 |
---|---|
container_issue | 8 |
container_start_page | 2522 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Zhang, Jiaming Guan, Chunying Jin, Yuan Ye, Peng Cheng, Tailei Yang, Jing Tian, Peixuan Zhu, Zheng Shi, Jinhui Yang, Jun Yuan, Libo |
description | A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index. |
doi_str_mv | 10.1109/JLT.2021.3050323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2021_3050323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9317841</ieee_id><sourcerecordid>2505611931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nNW5yUSQ-hyy5hY6tqYmreh_b8aGL_cDzvndy0HoltEZY1Q_vK6rGaeczQTNqODiDE1YlhWEcybO0YQqIUihuLxEVzFuKWVSFmqCthXsewh2GANg2zn8AU2w9dB-A151Dn7IofaQSjfgN-8Al777hjBAwI82gsO-w5VNjDQu_Q7IPMY2Dml7Gu2OlD6BF-0GwjW6aOwuws2pT9Hn4rkql2T9_rIq52tSc80GwlTNc10z17iicaqQXGykdjR3WjOta1dowZ2qG82lhVpL5ZQDIZWkVORJPUX3R24f_NcIcTBbP4YunTQ8o1nOmBYsqehRVQcfY4DG9KHd2_BrGDWHRE1K1BwSNadEk-XuaGkB4F-eYOlJJv4Ab_ZxHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505611931</pqid></control><display><type>article</type><title>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jiaming ; Guan, Chunying ; Jin, Yuan ; Ye, Peng ; Cheng, Tailei ; Yang, Jing ; Tian, Peixuan ; Zhu, Zheng ; Shi, Jinhui ; Yang, Jun ; Yuan, Libo</creator><creatorcontrib>Zhang, Jiaming ; Guan, Chunying ; Jin, Yuan ; Ye, Peng ; Cheng, Tailei ; Yang, Jing ; Tian, Peixuan ; Zhu, Zheng ; Shi, Jinhui ; Yang, Jun ; Yuan, Libo</creatorcontrib><description>A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3050323</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>C band ; Converters ; dual-core fiber ; Eccentricity ; hole-assisted fiber ; Length measurement ; Mode converter (MC) ; mode coupling ; Optical fiber devices ; Optical fiber dispersion ; Optical fiber polarization ; Phase matching ; Refractive index ; Refractivity ; Splicing ; Temperature measurement ; Wavelength measurement</subject><ispartof>Journal of lightwave technology, 2021-04, Vol.39 (8), p.2522-2527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</citedby><cites>FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</cites><orcidid>0000-0002-2425-4553 ; 0000-0001-8692-7605 ; 0000-0002-7701-8247 ; 0000-0002-6805-4289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9317841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9317841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jiaming</creatorcontrib><creatorcontrib>Guan, Chunying</creatorcontrib><creatorcontrib>Jin, Yuan</creatorcontrib><creatorcontrib>Ye, Peng</creatorcontrib><creatorcontrib>Cheng, Tailei</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Tian, Peixuan</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Shi, Jinhui</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yuan, Libo</creatorcontrib><title>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.</description><subject>C band</subject><subject>Converters</subject><subject>dual-core fiber</subject><subject>Eccentricity</subject><subject>hole-assisted fiber</subject><subject>Length measurement</subject><subject>Mode converter (MC)</subject><subject>mode coupling</subject><subject>Optical fiber devices</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber polarization</subject><subject>Phase matching</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Splicing</subject><subject>Temperature measurement</subject><subject>Wavelength measurement</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8BnzPz1aZ5nNW5yUSQ-hyy5hY6tqYmreh_b8aGL_cDzvndy0HoltEZY1Q_vK6rGaeczQTNqODiDE1YlhWEcybO0YQqIUihuLxEVzFuKWVSFmqCthXsewh2GANg2zn8AU2w9dB-A151Dn7IofaQSjfgN-8Al777hjBAwI82gsO-w5VNjDQu_Q7IPMY2Dml7Gu2OlD6BF-0GwjW6aOwuws2pT9Hn4rkql2T9_rIq52tSc80GwlTNc10z17iicaqQXGykdjR3WjOta1dowZ2qG82lhVpL5ZQDIZWkVORJPUX3R24f_NcIcTBbP4YunTQ8o1nOmBYsqehRVQcfY4DG9KHd2_BrGDWHRE1K1BwSNadEk-XuaGkB4F-eYOlJJv4Ab_ZxHg</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Zhang, Jiaming</creator><creator>Guan, Chunying</creator><creator>Jin, Yuan</creator><creator>Ye, Peng</creator><creator>Cheng, Tailei</creator><creator>Yang, Jing</creator><creator>Tian, Peixuan</creator><creator>Zhu, Zheng</creator><creator>Shi, Jinhui</creator><creator>Yang, Jun</creator><creator>Yuan, Libo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2425-4553</orcidid><orcidid>https://orcid.org/0000-0001-8692-7605</orcidid><orcidid>https://orcid.org/0000-0002-7701-8247</orcidid><orcidid>https://orcid.org/0000-0002-6805-4289</orcidid></search><sort><creationdate>20210415</creationdate><title>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</title><author>Zhang, Jiaming ; Guan, Chunying ; Jin, Yuan ; Ye, Peng ; Cheng, Tailei ; Yang, Jing ; Tian, Peixuan ; Zhu, Zheng ; Shi, Jinhui ; Yang, Jun ; Yuan, Libo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-17c269c1dfd8fd78423b49d06d99199cd8932d7cf924aec947d7de34740036423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C band</topic><topic>Converters</topic><topic>dual-core fiber</topic><topic>Eccentricity</topic><topic>hole-assisted fiber</topic><topic>Length measurement</topic><topic>Mode converter (MC)</topic><topic>mode coupling</topic><topic>Optical fiber devices</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber polarization</topic><topic>Phase matching</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Splicing</topic><topic>Temperature measurement</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiaming</creatorcontrib><creatorcontrib>Guan, Chunying</creatorcontrib><creatorcontrib>Jin, Yuan</creatorcontrib><creatorcontrib>Ye, Peng</creatorcontrib><creatorcontrib>Cheng, Tailei</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Tian, Peixuan</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><creatorcontrib>Shi, Jinhui</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yuan, Libo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jiaming</au><au>Guan, Chunying</au><au>Jin, Yuan</au><au>Ye, Peng</au><au>Cheng, Tailei</au><au>Yang, Jing</au><au>Tian, Peixuan</au><au>Zhu, Zheng</au><au>Shi, Jinhui</au><au>Yang, Jun</au><au>Yuan, Libo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>39</volume><issue>8</issue><spage>2522</spage><epage>2527</epage><pages>2522-2527</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A compact mode converter (MC) has been demonstrated based on tapered hole-assisted dual-core fiber (HADCF). The MC is fabricated by splicing single mode fiber (SMF) and a piece of HADCF that is composed of a central single mode core (SMC), an eccentric few mode core (FMC), and a large eccentric air hole. The HADCF is tapered in a controllable manner and the fundamental mode LP 01 of the central core is coupled to the high-order LP 11 mode of the eccentric core as two modes satisfy the phase matching condition. The high-order LP 11 mode can be converted effectively across the range from O-band to C-band by only changing the tapered length. With the decreasing taper ratio, the mode conversion wavelength has a blue shift. The measured purity of the LP 11 modes in the range from 1310 to 1550 nm are always higher than 95%. In addition, the tapered HADCF-MC is insensitive to the change of the temperature and external refractive index.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3050323</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2425-4553</orcidid><orcidid>https://orcid.org/0000-0001-8692-7605</orcidid><orcidid>https://orcid.org/0000-0002-7701-8247</orcidid><orcidid>https://orcid.org/0000-0002-6805-4289</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-04, Vol.39 (8), p.2522-2527 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2021_3050323 |
source | IEEE Electronic Library (IEL) |
subjects | C band Converters dual-core fiber Eccentricity hole-assisted fiber Length measurement Mode converter (MC) mode coupling Optical fiber devices Optical fiber dispersion Optical fiber polarization Phase matching Refractive index Refractivity Splicing Temperature measurement Wavelength measurement |
title | Temperature and Refractive Index-Independent Mode Converter Based on Tapered Hole-Assisted Dual-Core Fiber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20and%20Refractive%20Index-Independent%20Mode%20Converter%20Based%20on%20Tapered%20Hole-Assisted%20Dual-Core%20Fiber&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zhang,%20Jiaming&rft.date=2021-04-15&rft.volume=39&rft.issue=8&rft.spage=2522&rft.epage=2527&rft.pages=2522-2527&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3050323&rft_dat=%3Cproquest_RIE%3E2505611931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505611931&rft_id=info:pmid/&rft_ieee_id=9317841&rfr_iscdi=true |