Calculation Method of Brillouin Power and Frequency Coefficients for Fiber Strain and Temperature Based on Multi-Layer Segmentation
A novel theoretical calculation method is proposed to obtain Brillouin power and frequency coefficients for strain and temperature of optical fibers used in Brillouin optical time domain sensors. For a GeO 2 -doped single mode fiber with any kind of complex refractive index profile, if the profile o...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2019-10, Vol.37 (19), p.4947-4956 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4956 |
---|---|
container_issue | 19 |
container_start_page | 4947 |
container_title | Journal of lightwave technology |
container_volume | 37 |
creator | Peng, Jianqin Lu, Yuangang Bao, Xiaoyi Chen, Liang |
description | A novel theoretical calculation method is proposed to obtain Brillouin power and frequency coefficients for strain and temperature of optical fibers used in Brillouin optical time domain sensors. For a GeO 2 -doped single mode fiber with any kind of complex refractive index profile, if the profile of refractive index and dopants of the fiber is available, the power-strain and power-temperature coefficients can be, respectively, derived by observing the strain and temperature dependence of Brillouin power through the changes of fiber's effective refractive index, density, sound velocity, and acousto-optic effective area. The frequency-strain and frequency-temperature coefficients can be directly obtained by detecting the strain and temperature dependence of Brillouin frequency. The complex problem of the change of acousto-optic effective area is solved by multi-layer segmentation method. The single mode fiber-28 and large effective area fiber are taken as examples to validate the theoretical derivation. The validity of the proposed method is verified by comparing the calculation results of the Brillouin power and frequency coefficients for strain and temperature with the corresponding experimental results in the literature. |
doi_str_mv | 10.1109/JLT.2019.2926300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2019_2926300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8753602</ieee_id><sourcerecordid>2298707677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6c85ed5d75c3c70dafaec40b7fabcd2a7e2566aad2d9880d62c182a14e07defb3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqWwI7FYYk6xnYedkVaUh4JAosyRY1-DqzQudiLUmT-OQyumu3zfOboHoUtKZpSS8uapWs0YoeWMlaxICTlCE5rnImGMpsdoQniaJoKz7BSdhbAmhGaZ4BP0s5CtGlrZW9fhZ-g_ncbO4Lm3besG2-FX9w0ey07jpYevATq1wwsHxlhloesDNs7jpW0i9NZ7GY2RXcFmC172gwc8lwFiaIwf2t4mldyNLHxsov7Xe45OjGwDXBzuFL0v71aLh6R6uX9c3FaJYiXtk0KJHHSuea5SxYmWRoLKSMONbJRmkgPLi0JKzXQpBNEFU1QwSTMgXINp0im63uduvYufhL5eu8F3sbJmrBSc8ILzSJE9pbwLwYOpt95upN_VlNTj1HWcuh6nrg9TR-Vqr1gA-McFz9OCsPQXsLt9BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298707677</pqid></control><display><type>article</type><title>Calculation Method of Brillouin Power and Frequency Coefficients for Fiber Strain and Temperature Based on Multi-Layer Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Jianqin ; Lu, Yuangang ; Bao, Xiaoyi ; Chen, Liang</creator><creatorcontrib>Peng, Jianqin ; Lu, Yuangang ; Bao, Xiaoyi ; Chen, Liang</creatorcontrib><description>A novel theoretical calculation method is proposed to obtain Brillouin power and frequency coefficients for strain and temperature of optical fibers used in Brillouin optical time domain sensors. For a GeO 2 -doped single mode fiber with any kind of complex refractive index profile, if the profile of refractive index and dopants of the fiber is available, the power-strain and power-temperature coefficients can be, respectively, derived by observing the strain and temperature dependence of Brillouin power through the changes of fiber's effective refractive index, density, sound velocity, and acousto-optic effective area. The frequency-strain and frequency-temperature coefficients can be directly obtained by detecting the strain and temperature dependence of Brillouin frequency. The complex problem of the change of acousto-optic effective area is solved by multi-layer segmentation method. The single mode fiber-28 and large effective area fiber are taken as examples to validate the theoretical derivation. The validity of the proposed method is verified by comparing the calculation results of the Brillouin power and frequency coefficients for strain and temperature with the corresponding experimental results in the literature.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2926300</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic velocity ; Acousto-optics ; Brillouin optical time domain sensing ; Brillouin scattering in optical fiber ; Coefficients ; frequency-strain coefficient ; frequency-temperature coefficients ; Germanium oxides ; Mathematical analysis ; multi-layer segmentation ; Multilayers ; Optical fibers ; Optical refraction ; Optical sensors ; Optical variables control ; Optics ; power-strain coefficient ; power-temperature coefficient ; Refractive index ; Refractivity ; Scattering ; Segmentation ; Strain ; Temperature ; Temperature dependence ; Temperature sensors</subject><ispartof>Journal of lightwave technology, 2019-10, Vol.37 (19), p.4947-4956</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6c85ed5d75c3c70dafaec40b7fabcd2a7e2566aad2d9880d62c182a14e07defb3</citedby><cites>FETCH-LOGICAL-c291t-6c85ed5d75c3c70dafaec40b7fabcd2a7e2566aad2d9880d62c182a14e07defb3</cites><orcidid>0000-0001-8207-1555 ; 0000-0001-5977-0809 ; 0000-0002-5525-0694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8753602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8753602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Jianqin</creatorcontrib><creatorcontrib>Lu, Yuangang</creatorcontrib><creatorcontrib>Bao, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Calculation Method of Brillouin Power and Frequency Coefficients for Fiber Strain and Temperature Based on Multi-Layer Segmentation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A novel theoretical calculation method is proposed to obtain Brillouin power and frequency coefficients for strain and temperature of optical fibers used in Brillouin optical time domain sensors. For a GeO 2 -doped single mode fiber with any kind of complex refractive index profile, if the profile of refractive index and dopants of the fiber is available, the power-strain and power-temperature coefficients can be, respectively, derived by observing the strain and temperature dependence of Brillouin power through the changes of fiber's effective refractive index, density, sound velocity, and acousto-optic effective area. The frequency-strain and frequency-temperature coefficients can be directly obtained by detecting the strain and temperature dependence of Brillouin frequency. The complex problem of the change of acousto-optic effective area is solved by multi-layer segmentation method. The single mode fiber-28 and large effective area fiber are taken as examples to validate the theoretical derivation. The validity of the proposed method is verified by comparing the calculation results of the Brillouin power and frequency coefficients for strain and temperature with the corresponding experimental results in the literature.</description><subject>Acoustic velocity</subject><subject>Acousto-optics</subject><subject>Brillouin optical time domain sensing</subject><subject>Brillouin scattering in optical fiber</subject><subject>Coefficients</subject><subject>frequency-strain coefficient</subject><subject>frequency-temperature coefficients</subject><subject>Germanium oxides</subject><subject>Mathematical analysis</subject><subject>multi-layer segmentation</subject><subject>Multilayers</subject><subject>Optical fibers</subject><subject>Optical refraction</subject><subject>Optical sensors</subject><subject>Optical variables control</subject><subject>Optics</subject><subject>power-strain coefficient</subject><subject>power-temperature coefficient</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Scattering</subject><subject>Segmentation</subject><subject>Strain</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature sensors</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPwzAUhS0EEqWwI7FYYk6xnYedkVaUh4JAosyRY1-DqzQudiLUmT-OQyumu3zfOboHoUtKZpSS8uapWs0YoeWMlaxICTlCE5rnImGMpsdoQniaJoKz7BSdhbAmhGaZ4BP0s5CtGlrZW9fhZ-g_ncbO4Lm3besG2-FX9w0ey07jpYevATq1wwsHxlhloesDNs7jpW0i9NZ7GY2RXcFmC172gwc8lwFiaIwf2t4mldyNLHxsov7Xe45OjGwDXBzuFL0v71aLh6R6uX9c3FaJYiXtk0KJHHSuea5SxYmWRoLKSMONbJRmkgPLi0JKzXQpBNEFU1QwSTMgXINp0im63uduvYufhL5eu8F3sbJmrBSc8ILzSJE9pbwLwYOpt95upN_VlNTj1HWcuh6nrg9TR-Vqr1gA-McFz9OCsPQXsLt9BQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Peng, Jianqin</creator><creator>Lu, Yuangang</creator><creator>Bao, Xiaoyi</creator><creator>Chen, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8207-1555</orcidid><orcidid>https://orcid.org/0000-0001-5977-0809</orcidid><orcidid>https://orcid.org/0000-0002-5525-0694</orcidid></search><sort><creationdate>20191001</creationdate><title>Calculation Method of Brillouin Power and Frequency Coefficients for Fiber Strain and Temperature Based on Multi-Layer Segmentation</title><author>Peng, Jianqin ; Lu, Yuangang ; Bao, Xiaoyi ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6c85ed5d75c3c70dafaec40b7fabcd2a7e2566aad2d9880d62c182a14e07defb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic velocity</topic><topic>Acousto-optics</topic><topic>Brillouin optical time domain sensing</topic><topic>Brillouin scattering in optical fiber</topic><topic>Coefficients</topic><topic>frequency-strain coefficient</topic><topic>frequency-temperature coefficients</topic><topic>Germanium oxides</topic><topic>Mathematical analysis</topic><topic>multi-layer segmentation</topic><topic>Multilayers</topic><topic>Optical fibers</topic><topic>Optical refraction</topic><topic>Optical sensors</topic><topic>Optical variables control</topic><topic>Optics</topic><topic>power-strain coefficient</topic><topic>power-temperature coefficient</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Scattering</topic><topic>Segmentation</topic><topic>Strain</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jianqin</creatorcontrib><creatorcontrib>Lu, Yuangang</creatorcontrib><creatorcontrib>Bao, Xiaoyi</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Jianqin</au><au>Lu, Yuangang</au><au>Bao, Xiaoyi</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation Method of Brillouin Power and Frequency Coefficients for Fiber Strain and Temperature Based on Multi-Layer Segmentation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>37</volume><issue>19</issue><spage>4947</spage><epage>4956</epage><pages>4947-4956</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A novel theoretical calculation method is proposed to obtain Brillouin power and frequency coefficients for strain and temperature of optical fibers used in Brillouin optical time domain sensors. For a GeO 2 -doped single mode fiber with any kind of complex refractive index profile, if the profile of refractive index and dopants of the fiber is available, the power-strain and power-temperature coefficients can be, respectively, derived by observing the strain and temperature dependence of Brillouin power through the changes of fiber's effective refractive index, density, sound velocity, and acousto-optic effective area. The frequency-strain and frequency-temperature coefficients can be directly obtained by detecting the strain and temperature dependence of Brillouin frequency. The complex problem of the change of acousto-optic effective area is solved by multi-layer segmentation method. The single mode fiber-28 and large effective area fiber are taken as examples to validate the theoretical derivation. The validity of the proposed method is verified by comparing the calculation results of the Brillouin power and frequency coefficients for strain and temperature with the corresponding experimental results in the literature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2926300</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8207-1555</orcidid><orcidid>https://orcid.org/0000-0001-5977-0809</orcidid><orcidid>https://orcid.org/0000-0002-5525-0694</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2019-10, Vol.37 (19), p.4947-4956 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2019_2926300 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic velocity Acousto-optics Brillouin optical time domain sensing Brillouin scattering in optical fiber Coefficients frequency-strain coefficient frequency-temperature coefficients Germanium oxides Mathematical analysis multi-layer segmentation Multilayers Optical fibers Optical refraction Optical sensors Optical variables control Optics power-strain coefficient power-temperature coefficient Refractive index Refractivity Scattering Segmentation Strain Temperature Temperature dependence Temperature sensors |
title | Calculation Method of Brillouin Power and Frequency Coefficients for Fiber Strain and Temperature Based on Multi-Layer Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20Method%20of%20Brillouin%20Power%20and%20Frequency%20Coefficients%20for%20Fiber%20Strain%20and%20Temperature%20Based%20on%20Multi-Layer%20Segmentation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Peng,%20Jianqin&rft.date=2019-10-01&rft.volume=37&rft.issue=19&rft.spage=4947&rft.epage=4956&rft.pages=4947-4956&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2926300&rft_dat=%3Cproquest_RIE%3E2298707677%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298707677&rft_id=info:pmid/&rft_ieee_id=8753602&rfr_iscdi=true |