Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor
In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched mu...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2019-05, Vol.37 (9), p.2147-2154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2154 |
---|---|
container_issue | 9 |
container_start_page | 2147 |
container_title | Journal of lightwave technology |
container_volume | 37 |
creator | Ren, Naikui Yu, Youlong Jiang, Xin Li, Yujie |
description | In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results. |
doi_str_mv | 10.1109/JLT.2019.2898879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2019_2898879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8640092</ieee_id><sourcerecordid>2210013860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</originalsourceid><addsrcrecordid>eNo9kM1PwjAYxhujiYjeTbws8Tzs59odBQUxoAfx3HRdi8OxYrth_O_tAnp6P_I8z5v3B8A1giOEYH73vFiNMET5CItcCJ6fgAFiTKQYI3IKBpATkgqO6Tm4CGEDIaJU8AHYz7c77_amTJZd3VbpzKu2atbJtKpb4_vuwWxd2dVx7ZpkadoPVyZjFaIjzhMVtCp72YvpvKpjab-d_wyJdT6GFMYnY6_W6-Qv-M00wflLcGZVHczVsQ7B-_RxNXlKF6-z-eR-kWqcoza1rFScFhlXDBMtGC9FYbHNSk0LYgmiWOWYaW40Y5Rqyy3FgunSQEWUwoQMwe0hNz751ZnQyo3rfBNPyggmUiAig1EFDyrtXQjeWLnz1Vb5H4mg7OnKSFf2dOWRbrTcHCyVMeZfLjIKYY7JL-AGdxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210013860</pqid></control><display><type>article</type><title>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>Ren, Naikui ; Yu, Youlong ; Jiang, Xin ; Li, Yujie</creator><creatorcontrib>Ren, Naikui ; Yu, Youlong ; Jiang, Xin ; Li, Yujie</creatorcontrib><description>In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2898879</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Bragg gratings ; Demodulation ; Fiber gratings ; fiber optics ; Filtration ; matched filters ; Neural networks ; Performance enhancement ; Sensors ; Structural health monitoring ; Test sets ; Training ; Wavelength measurement</subject><ispartof>Journal of lightwave technology, 2019-05, Vol.37 (9), p.2147-2154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</citedby><cites>FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</cites><orcidid>0000-0002-3038-0257 ; 0000-0003-4979-1539 ; 0000-0002-5868-0972 ; 0000-0002-2507-4706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8640092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8640092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren, Naikui</creatorcontrib><creatorcontrib>Yu, Youlong</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><title>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bragg gratings</subject><subject>Demodulation</subject><subject>Fiber gratings</subject><subject>fiber optics</subject><subject>Filtration</subject><subject>matched filters</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Sensors</subject><subject>Structural health monitoring</subject><subject>Test sets</subject><subject>Training</subject><subject>Wavelength measurement</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PwjAYxhujiYjeTbws8Tzs59odBQUxoAfx3HRdi8OxYrth_O_tAnp6P_I8z5v3B8A1giOEYH73vFiNMET5CItcCJ6fgAFiTKQYI3IKBpATkgqO6Tm4CGEDIaJU8AHYz7c77_amTJZd3VbpzKu2atbJtKpb4_vuwWxd2dVx7ZpkadoPVyZjFaIjzhMVtCp72YvpvKpjab-d_wyJdT6GFMYnY6_W6-Qv-M00wflLcGZVHczVsQ7B-_RxNXlKF6-z-eR-kWqcoza1rFScFhlXDBMtGC9FYbHNSk0LYgmiWOWYaW40Y5Rqyy3FgunSQEWUwoQMwe0hNz751ZnQyo3rfBNPyggmUiAig1EFDyrtXQjeWLnz1Vb5H4mg7OnKSFf2dOWRbrTcHCyVMeZfLjIKYY7JL-AGdxo</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ren, Naikui</creator><creator>Yu, Youlong</creator><creator>Jiang, Xin</creator><creator>Li, Yujie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3038-0257</orcidid><orcidid>https://orcid.org/0000-0003-4979-1539</orcidid><orcidid>https://orcid.org/0000-0002-5868-0972</orcidid><orcidid>https://orcid.org/0000-0002-2507-4706</orcidid></search><sort><creationdate>20190501</creationdate><title>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</title><author>Ren, Naikui ; Yu, Youlong ; Jiang, Xin ; Li, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bragg gratings</topic><topic>Demodulation</topic><topic>Fiber gratings</topic><topic>fiber optics</topic><topic>Filtration</topic><topic>matched filters</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Sensors</topic><topic>Structural health monitoring</topic><topic>Test sets</topic><topic>Training</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Naikui</creatorcontrib><creatorcontrib>Yu, Youlong</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, Naikui</au><au>Yu, Youlong</au><au>Jiang, Xin</au><au>Li, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>37</volume><issue>9</issue><spage>2147</spage><epage>2154</epage><pages>2147-2154</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2898879</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3038-0257</orcidid><orcidid>https://orcid.org/0000-0003-4979-1539</orcidid><orcidid>https://orcid.org/0000-0002-5868-0972</orcidid><orcidid>https://orcid.org/0000-0002-2507-4706</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2019-05, Vol.37 (9), p.2147-2154 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2019_2898879 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Back propagation Bragg gratings Demodulation Fiber gratings fiber optics Filtration matched filters Neural networks Performance enhancement Sensors Structural health monitoring Test sets Training Wavelength measurement |
title | Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Multi-Grating%20Filtering%20Demodulation%20Method%20Based%20on%20Cascading%20Neural%20Networks%20for%20Fiber%20Bragg%20Grating%20Sensor&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ren,%20Naikui&rft.date=2019-05-01&rft.volume=37&rft.issue=9&rft.spage=2147&rft.epage=2154&rft.pages=2147-2154&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2898879&rft_dat=%3Cproquest_RIE%3E2210013860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210013860&rft_id=info:pmid/&rft_ieee_id=8640092&rfr_iscdi=true |