Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor

In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2019-05, Vol.37 (9), p.2147-2154
Hauptverfasser: Ren, Naikui, Yu, Youlong, Jiang, Xin, Li, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2154
container_issue 9
container_start_page 2147
container_title Journal of lightwave technology
container_volume 37
creator Ren, Naikui
Yu, Youlong
Jiang, Xin
Li, Yujie
description In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.
doi_str_mv 10.1109/JLT.2019.2898879
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2019_2898879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8640092</ieee_id><sourcerecordid>2210013860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</originalsourceid><addsrcrecordid>eNo9kM1PwjAYxhujiYjeTbws8Tzs59odBQUxoAfx3HRdi8OxYrth_O_tAnp6P_I8z5v3B8A1giOEYH73vFiNMET5CItcCJ6fgAFiTKQYI3IKBpATkgqO6Tm4CGEDIaJU8AHYz7c77_amTJZd3VbpzKu2atbJtKpb4_vuwWxd2dVx7ZpkadoPVyZjFaIjzhMVtCp72YvpvKpjab-d_wyJdT6GFMYnY6_W6-Qv-M00wflLcGZVHczVsQ7B-_RxNXlKF6-z-eR-kWqcoza1rFScFhlXDBMtGC9FYbHNSk0LYgmiWOWYaW40Y5Rqyy3FgunSQEWUwoQMwe0hNz751ZnQyo3rfBNPyggmUiAig1EFDyrtXQjeWLnz1Vb5H4mg7OnKSFf2dOWRbrTcHCyVMeZfLjIKYY7JL-AGdxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210013860</pqid></control><display><type>article</type><title>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>Ren, Naikui ; Yu, Youlong ; Jiang, Xin ; Li, Yujie</creator><creatorcontrib>Ren, Naikui ; Yu, Youlong ; Jiang, Xin ; Li, Yujie</creatorcontrib><description>In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2898879</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Back propagation ; Bragg gratings ; Demodulation ; Fiber gratings ; fiber optics ; Filtration ; matched filters ; Neural networks ; Performance enhancement ; Sensors ; Structural health monitoring ; Test sets ; Training ; Wavelength measurement</subject><ispartof>Journal of lightwave technology, 2019-05, Vol.37 (9), p.2147-2154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</citedby><cites>FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</cites><orcidid>0000-0002-3038-0257 ; 0000-0003-4979-1539 ; 0000-0002-5868-0972 ; 0000-0002-2507-4706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8640092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8640092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren, Naikui</creatorcontrib><creatorcontrib>Yu, Youlong</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><title>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bragg gratings</subject><subject>Demodulation</subject><subject>Fiber gratings</subject><subject>fiber optics</subject><subject>Filtration</subject><subject>matched filters</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Sensors</subject><subject>Structural health monitoring</subject><subject>Test sets</subject><subject>Training</subject><subject>Wavelength measurement</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PwjAYxhujiYjeTbws8Tzs59odBQUxoAfx3HRdi8OxYrth_O_tAnp6P_I8z5v3B8A1giOEYH73vFiNMET5CItcCJ6fgAFiTKQYI3IKBpATkgqO6Tm4CGEDIaJU8AHYz7c77_amTJZd3VbpzKu2atbJtKpb4_vuwWxd2dVx7ZpkadoPVyZjFaIjzhMVtCp72YvpvKpjab-d_wyJdT6GFMYnY6_W6-Qv-M00wflLcGZVHczVsQ7B-_RxNXlKF6-z-eR-kWqcoza1rFScFhlXDBMtGC9FYbHNSk0LYgmiWOWYaW40Y5Rqyy3FgunSQEWUwoQMwe0hNz751ZnQyo3rfBNPyggmUiAig1EFDyrtXQjeWLnz1Vb5H4mg7OnKSFf2dOWRbrTcHCyVMeZfLjIKYY7JL-AGdxo</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ren, Naikui</creator><creator>Yu, Youlong</creator><creator>Jiang, Xin</creator><creator>Li, Yujie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3038-0257</orcidid><orcidid>https://orcid.org/0000-0003-4979-1539</orcidid><orcidid>https://orcid.org/0000-0002-5868-0972</orcidid><orcidid>https://orcid.org/0000-0002-2507-4706</orcidid></search><sort><creationdate>20190501</creationdate><title>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</title><author>Ren, Naikui ; Yu, Youlong ; Jiang, Xin ; Li, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f5da74b67a523c857d8bf2f6dc4b3f3142a925c7ec5544cf7f4285cde0a3aa233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bragg gratings</topic><topic>Demodulation</topic><topic>Fiber gratings</topic><topic>fiber optics</topic><topic>Filtration</topic><topic>matched filters</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Sensors</topic><topic>Structural health monitoring</topic><topic>Test sets</topic><topic>Training</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Naikui</creatorcontrib><creatorcontrib>Yu, Youlong</creatorcontrib><creatorcontrib>Jiang, Xin</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, Naikui</au><au>Yu, Youlong</au><au>Jiang, Xin</au><au>Li, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>37</volume><issue>9</issue><spage>2147</spage><epage>2154</epage><pages>2147-2154</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In recent decades, fiber Bragg grating (FBG) sensors have proven useful for structural health monitoring. An accurate and low-cost FBG demodulation method is needed to improve the performance of these sensors in structural-monitoring applications. This paper presents an improved method of matched multi-FBG-filtering demodulation that uses two cascading artificial neural networks (ANNs). The first net is used to select the matched-FBG, and the second net is used to demodulate the sensing signal from the FBG sensor. Several algorithms were tested for training the ANNs. The scaled conjugate gradient backpropagation algorithm proves to be the best algorithm for training the first ANN, and the one-step-secant backpropagation algorithm is most suitable for training the second ANN. Errors in the cascading ANNs can be decreased by adjusting the difference in wavelength between the matched FBGs and varying the algorithms used in the ANNs. When the difference in wavelength is 0.2271 nm, the maximum errors returned with test sets using the optimal algorithms are -10.39 pm and -10.11 με for wavelength and strain, respectively. The ANNs prove to be generalizable, given in our results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2898879</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3038-0257</orcidid><orcidid>https://orcid.org/0000-0003-4979-1539</orcidid><orcidid>https://orcid.org/0000-0002-5868-0972</orcidid><orcidid>https://orcid.org/0000-0002-2507-4706</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2019-05, Vol.37 (9), p.2147-2154
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2019_2898879
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Back propagation
Bragg gratings
Demodulation
Fiber gratings
fiber optics
Filtration
matched filters
Neural networks
Performance enhancement
Sensors
Structural health monitoring
Test sets
Training
Wavelength measurement
title Improved Multi-Grating Filtering Demodulation Method Based on Cascading Neural Networks for Fiber Bragg Grating Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Multi-Grating%20Filtering%20Demodulation%20Method%20Based%20on%20Cascading%20Neural%20Networks%20for%20Fiber%20Bragg%20Grating%20Sensor&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ren,%20Naikui&rft.date=2019-05-01&rft.volume=37&rft.issue=9&rft.spage=2147&rft.epage=2154&rft.pages=2147-2154&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2898879&rft_dat=%3Cproquest_RIE%3E2210013860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210013860&rft_id=info:pmid/&rft_ieee_id=8640092&rfr_iscdi=true