Time-Scale Independent Permutation Entropy of a Photonic Integrated Device

A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2017-01, Vol.35 (1), p.88-95
Hauptverfasser: Toomey, Joshua P., Argyris, Apostolos, McMahon, Christopher, Syvridis, Dimitris, Kane, Deborah M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 88
container_title Journal of lightwave technology
container_volume 35
creator Toomey, Joshua P.
Argyris, Apostolos
McMahon, Christopher
Syvridis, Dimitris
Kane, Deborah M.
description A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.
doi_str_mv 10.1109/JLT.2016.2626387
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2016_2626387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7738502</ieee_id><sourcerecordid>1869404636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H0uprbYULFjXIZPe0SntZMykQv-9U1rc3LP5zrnwIXRPyYhSYp_mi9WIEapGTDHFjb5AAyqlKRij_BINiOa8MJqJa3TTdRtCqBBGD9B8Ve-g-Ah-C3jWrKGF_jQZLyHt9tnnOjZ40uQU2wOOFfZ4-R1zbOrQ0xm-ks-wxi_wWwe4RVeV33Zwd84h-pxOVuO3YvH-Ohs_L4rALM1Faaxl3lKvSqgsUdJrSylfM64l-FJ5URJlmRQi6KBI8CCDCaQUVgHVzPIhejzttin-7KHLbhP3qelfOmqUFUQornqKnKiQYtclqFyb6p1PB0eJOxpzvTF3NObOxvrKw6lSA8A_rjU3kjD-BwORZhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869404636</pqid></control><display><type>article</type><title>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</title><source>IEEE Electronic Library (IEL)</source><creator>Toomey, Joshua P. ; Argyris, Apostolos ; McMahon, Christopher ; Syvridis, Dimitris ; Kane, Deborah M.</creator><creatorcontrib>Toomey, Joshua P. ; Argyris, Apostolos ; McMahon, Christopher ; Syvridis, Dimitris ; Kane, Deborah M.</creatorcontrib><description>A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2016.2626387</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaotic communication ; Complexity ; Complexity theory ; Delays ; Entropy ; Feedback ; integrated optoelectronic devices ; Laser feedback ; Limit cycle oscillations ; Measurement by laser beam ; Photonics ; Semiconductor lasers ; Time series analysis</subject><ispartof>Journal of lightwave technology, 2017-01, Vol.35 (1), p.88-95</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</citedby><cites>FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7738502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7738502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Toomey, Joshua P.</creatorcontrib><creatorcontrib>Argyris, Apostolos</creatorcontrib><creatorcontrib>McMahon, Christopher</creatorcontrib><creatorcontrib>Syvridis, Dimitris</creatorcontrib><creatorcontrib>Kane, Deborah M.</creatorcontrib><title>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.</description><subject>Chaotic communication</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Delays</subject><subject>Entropy</subject><subject>Feedback</subject><subject>integrated optoelectronic devices</subject><subject>Laser feedback</subject><subject>Limit cycle oscillations</subject><subject>Measurement by laser beam</subject><subject>Photonics</subject><subject>Semiconductor lasers</subject><subject>Time series analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H0uprbYULFjXIZPe0SntZMykQv-9U1rc3LP5zrnwIXRPyYhSYp_mi9WIEapGTDHFjb5AAyqlKRij_BINiOa8MJqJa3TTdRtCqBBGD9B8Ve-g-Ah-C3jWrKGF_jQZLyHt9tnnOjZ40uQU2wOOFfZ4-R1zbOrQ0xm-ks-wxi_wWwe4RVeV33Zwd84h-pxOVuO3YvH-Ohs_L4rALM1Faaxl3lKvSqgsUdJrSylfM64l-FJ5URJlmRQi6KBI8CCDCaQUVgHVzPIhejzttin-7KHLbhP3qelfOmqUFUQornqKnKiQYtclqFyb6p1PB0eJOxpzvTF3NObOxvrKw6lSA8A_rjU3kjD-BwORZhw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Toomey, Joshua P.</creator><creator>Argyris, Apostolos</creator><creator>McMahon, Christopher</creator><creator>Syvridis, Dimitris</creator><creator>Kane, Deborah M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</title><author>Toomey, Joshua P. ; Argyris, Apostolos ; McMahon, Christopher ; Syvridis, Dimitris ; Kane, Deborah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chaotic communication</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Delays</topic><topic>Entropy</topic><topic>Feedback</topic><topic>integrated optoelectronic devices</topic><topic>Laser feedback</topic><topic>Limit cycle oscillations</topic><topic>Measurement by laser beam</topic><topic>Photonics</topic><topic>Semiconductor lasers</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toomey, Joshua P.</creatorcontrib><creatorcontrib>Argyris, Apostolos</creatorcontrib><creatorcontrib>McMahon, Christopher</creatorcontrib><creatorcontrib>Syvridis, Dimitris</creatorcontrib><creatorcontrib>Kane, Deborah M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toomey, Joshua P.</au><au>Argyris, Apostolos</au><au>McMahon, Christopher</au><au>Syvridis, Dimitris</au><au>Kane, Deborah M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>35</volume><issue>1</issue><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2016.2626387</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2017-01, Vol.35 (1), p.88-95
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_JLT_2016_2626387
source IEEE Electronic Library (IEL)
subjects Chaotic communication
Complexity
Complexity theory
Delays
Entropy
Feedback
integrated optoelectronic devices
Laser feedback
Limit cycle oscillations
Measurement by laser beam
Photonics
Semiconductor lasers
Time series analysis
title Time-Scale Independent Permutation Entropy of a Photonic Integrated Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Scale%20Independent%20Permutation%20Entropy%20of%20a%20Photonic%20Integrated%20Device&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Toomey,%20Joshua%20P.&rft.date=2017-01-01&rft.volume=35&rft.issue=1&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2016.2626387&rft_dat=%3Cproquest_RIE%3E1869404636%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869404636&rft_id=info:pmid/&rft_ieee_id=7738502&rfr_iscdi=true