Time-Scale Independent Permutation Entropy of a Photonic Integrated Device
A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different c...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2017-01, Vol.35 (1), p.88-95 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Journal of lightwave technology |
container_volume | 35 |
creator | Toomey, Joshua P. Argyris, Apostolos McMahon, Christopher Syvridis, Dimitris Kane, Deborah M. |
description | A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics. |
doi_str_mv | 10.1109/JLT.2016.2626387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2016_2626387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7738502</ieee_id><sourcerecordid>1869404636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H0uprbYULFjXIZPe0SntZMykQv-9U1rc3LP5zrnwIXRPyYhSYp_mi9WIEapGTDHFjb5AAyqlKRij_BINiOa8MJqJa3TTdRtCqBBGD9B8Ve-g-Ah-C3jWrKGF_jQZLyHt9tnnOjZ40uQU2wOOFfZ4-R1zbOrQ0xm-ks-wxi_wWwe4RVeV33Zwd84h-pxOVuO3YvH-Ohs_L4rALM1Faaxl3lKvSqgsUdJrSylfM64l-FJ5URJlmRQi6KBI8CCDCaQUVgHVzPIhejzttin-7KHLbhP3qelfOmqUFUQornqKnKiQYtclqFyb6p1PB0eJOxpzvTF3NObOxvrKw6lSA8A_rjU3kjD-BwORZhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869404636</pqid></control><display><type>article</type><title>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</title><source>IEEE Electronic Library (IEL)</source><creator>Toomey, Joshua P. ; Argyris, Apostolos ; McMahon, Christopher ; Syvridis, Dimitris ; Kane, Deborah M.</creator><creatorcontrib>Toomey, Joshua P. ; Argyris, Apostolos ; McMahon, Christopher ; Syvridis, Dimitris ; Kane, Deborah M.</creatorcontrib><description>A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2016.2626387</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaotic communication ; Complexity ; Complexity theory ; Delays ; Entropy ; Feedback ; integrated optoelectronic devices ; Laser feedback ; Limit cycle oscillations ; Measurement by laser beam ; Photonics ; Semiconductor lasers ; Time series analysis</subject><ispartof>Journal of lightwave technology, 2017-01, Vol.35 (1), p.88-95</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</citedby><cites>FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7738502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7738502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Toomey, Joshua P.</creatorcontrib><creatorcontrib>Argyris, Apostolos</creatorcontrib><creatorcontrib>McMahon, Christopher</creatorcontrib><creatorcontrib>Syvridis, Dimitris</creatorcontrib><creatorcontrib>Kane, Deborah M.</creatorcontrib><title>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.</description><subject>Chaotic communication</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Delays</subject><subject>Entropy</subject><subject>Feedback</subject><subject>integrated optoelectronic devices</subject><subject>Laser feedback</subject><subject>Limit cycle oscillations</subject><subject>Measurement by laser beam</subject><subject>Photonics</subject><subject>Semiconductor lasers</subject><subject>Time series analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8H0uprbYULFjXIZPe0SntZMykQv-9U1rc3LP5zrnwIXRPyYhSYp_mi9WIEapGTDHFjb5AAyqlKRij_BINiOa8MJqJa3TTdRtCqBBGD9B8Ve-g-Ah-C3jWrKGF_jQZLyHt9tnnOjZ40uQU2wOOFfZ4-R1zbOrQ0xm-ks-wxi_wWwe4RVeV33Zwd84h-pxOVuO3YvH-Ohs_L4rALM1Faaxl3lKvSqgsUdJrSylfM64l-FJ5URJlmRQi6KBI8CCDCaQUVgHVzPIhejzttin-7KHLbhP3qelfOmqUFUQornqKnKiQYtclqFyb6p1PB0eJOxpzvTF3NObOxvrKw6lSA8A_rjU3kjD-BwORZhw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Toomey, Joshua P.</creator><creator>Argyris, Apostolos</creator><creator>McMahon, Christopher</creator><creator>Syvridis, Dimitris</creator><creator>Kane, Deborah M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</title><author>Toomey, Joshua P. ; Argyris, Apostolos ; McMahon, Christopher ; Syvridis, Dimitris ; Kane, Deborah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b8992a91a6bef9065a79113d2375eab6a4b0692544c7c60cae5c8c0b496e17293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chaotic communication</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Delays</topic><topic>Entropy</topic><topic>Feedback</topic><topic>integrated optoelectronic devices</topic><topic>Laser feedback</topic><topic>Limit cycle oscillations</topic><topic>Measurement by laser beam</topic><topic>Photonics</topic><topic>Semiconductor lasers</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toomey, Joshua P.</creatorcontrib><creatorcontrib>Argyris, Apostolos</creatorcontrib><creatorcontrib>McMahon, Christopher</creatorcontrib><creatorcontrib>Syvridis, Dimitris</creatorcontrib><creatorcontrib>Kane, Deborah M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toomey, Joshua P.</au><au>Argyris, Apostolos</au><au>McMahon, Christopher</au><au>Syvridis, Dimitris</au><au>Kane, Deborah M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Scale Independent Permutation Entropy of a Photonic Integrated Device</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>35</volume><issue>1</issue><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A new measure of complexity, time-scale independent permutation entropy, has been developed and applied to fully characterize the relative complexity of the emission of a four-section photonic integration chip (PIC) laser. The new technique allows the relative complexity of dynamics with different characteristic time scales to be compared. The analysis reveals the range of possible outputs the PIC device can produce over a three-dimensional operating parameter space. From the perspective of using such devices as synchronized transmitter and receiver pairs in chaos-based secure communication applications, a region of uninterrupted, highly complex, unpredictable dynamics has been identified for the device. Regions surrounding this desired complex state show intermittency, pulse packages, and limit-cycle oscillations. The effect of varying the laser's biasing current, feedback strength, and feedback phase reveals the extent of the short-cavity regime and provides insight to the fundamental physics driving the integrated device dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2016.2626387</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2017-01, Vol.35 (1), p.88-95 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2016_2626387 |
source | IEEE Electronic Library (IEL) |
subjects | Chaotic communication Complexity Complexity theory Delays Entropy Feedback integrated optoelectronic devices Laser feedback Limit cycle oscillations Measurement by laser beam Photonics Semiconductor lasers Time series analysis |
title | Time-Scale Independent Permutation Entropy of a Photonic Integrated Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Scale%20Independent%20Permutation%20Entropy%20of%20a%20Photonic%20Integrated%20Device&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Toomey,%20Joshua%20P.&rft.date=2017-01-01&rft.volume=35&rft.issue=1&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2016.2626387&rft_dat=%3Cproquest_RIE%3E1869404636%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869404636&rft_id=info:pmid/&rft_ieee_id=7738502&rfr_iscdi=true |