Theoretical Studies of Ultrashort Light Pulse Spectrally-Phase-Encoded OCDMA System Using Power-Cubic Optical Nonlinear Preprocessor
In this paper, a spectral-phase-encoded ultrashort light pulse optical code division multiple access (SPE-OCDMA) system employing a novel nonlinear power-cubic optical preprocessor at its receiver's front end is theoretically investigated. The system's mathematical model and the statistica...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2015-12, Vol.33 (24), p.5062-5072 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5072 |
---|---|
container_issue | 24 |
container_start_page | 5062 |
container_title | Journal of lightwave technology |
container_volume | 33 |
creator | Ranjbar Zefreh, Mahdi Salehi, Jawad A. |
description | In this paper, a spectral-phase-encoded ultrashort light pulse optical code division multiple access (SPE-OCDMA) system employing a novel nonlinear power-cubic optical preprocessor at its receiver's front end is theoretically investigated. The system's mathematical model and the statistical distribution of the decision variable Y, prior to the decision module of the receiver, are discussed. The first three moments of the random decision variable Y are obtained in the context of the above OCDMA system and subsequently used in an appropriate Log-Pearson type 3 (LP3) distribution to represent the random decision variable Y. Multiple access interference (MAI) and amplified spontaneous emission (ASE) noises are taken into account to obtain the bit error rate of the system. Furthermore, the effects of shot and thermal noises are also included in the system performance modeling. In this context, performance comparison of the system based on power-cubic preprocessor and systems employing power-quadratic nonlinear optical thresholders, such as second harmonic generation crystals, are discussed. Finally, through numerical calculations under various conditions, we show the superiority of power-cubic systems, especially in high power regime where MAI is the dominant noise. |
doi_str_mv | 10.1109/JLT.2015.2495334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2015_2495334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7307939</ieee_id><sourcerecordid>3883669011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-af005dfdbd0a8e0f035ed6b253afb3a837ca609bf3842917c286f389ff4084463</originalsourceid><addsrcrecordid>eNo9kM1rwjAYxsPYYM7tPtglsHNd0iRtehTnvnBTUM8lTd_YSm1c0jK87w9fRNnpfeB9PuCH0D0lI0pJ9vQxW41iQsUo5plgjF-gARVCRnFM2SUakJSxSKYxv0Y33m8JoZzLdIB-VxVYB12tVYOXXV_W4LE1eN10TvnKug7P6k3V4UXfeMDLPejwaJpDtKiUh2jaaltCieeT588xXh58Bzu89nW7wQv7Ay6a9EWt8Xx_WviybVO3oBxeONg7q8F7627RlVGh_u58h2j9Ml1N3qLZ_PV9Mp5FOs5oFylDiChNWZRESSCGMAFlUsSCKVMwJVmqVUKywjDJQyDVsUyCzozhRHKesCF6PPWG5e8efJdvbe_aMJnTlEnJhRQyuMjJpZ313oHJ967eKXfIKcmPrPPAOj-yzs-sQ-ThFKkB4N-eMpJmLGN_lWF8Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738845858</pqid></control><display><type>article</type><title>Theoretical Studies of Ultrashort Light Pulse Spectrally-Phase-Encoded OCDMA System Using Power-Cubic Optical Nonlinear Preprocessor</title><source>IEEE Electronic Library (IEL)</source><creator>Ranjbar Zefreh, Mahdi ; Salehi, Jawad A.</creator><creatorcontrib>Ranjbar Zefreh, Mahdi ; Salehi, Jawad A.</creatorcontrib><description>In this paper, a spectral-phase-encoded ultrashort light pulse optical code division multiple access (SPE-OCDMA) system employing a novel nonlinear power-cubic optical preprocessor at its receiver's front end is theoretically investigated. The system's mathematical model and the statistical distribution of the decision variable Y, prior to the decision module of the receiver, are discussed. The first three moments of the random decision variable Y are obtained in the context of the above OCDMA system and subsequently used in an appropriate Log-Pearson type 3 (LP3) distribution to represent the random decision variable Y. Multiple access interference (MAI) and amplified spontaneous emission (ASE) noises are taken into account to obtain the bit error rate of the system. Furthermore, the effects of shot and thermal noises are also included in the system performance modeling. In this context, performance comparison of the system based on power-cubic preprocessor and systems employing power-quadratic nonlinear optical thresholders, such as second harmonic generation crystals, are discussed. Finally, through numerical calculations under various conditions, we show the superiority of power-cubic systems, especially in high power regime where MAI is the dominant noise.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2015.2495334</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Bit Error Rate (BER) analysis ; Code Division Multiple Access ; LOG-PEARSON type-3 (LP3) Distribution ; Mathematical model ; Mathematical models ; Multiple Access Interference (MAI) ; Noise ; Nonlinear Optical Loop Mirror (NOLM) ; Nonlinear optics ; Optical pulse generation ; Optical pulses ; Optical receivers ; Performance Analysis ; Power- Nonlinear Receiver ; Shot Noise ; Spectral Phase Encoded OCDMA (SPEOCDMA) ; Thermal Noise ; Ultrashort Light Pulse</subject><ispartof>Journal of lightwave technology, 2015-12, Vol.33 (24), p.5062-5072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 15, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-af005dfdbd0a8e0f035ed6b253afb3a837ca609bf3842917c286f389ff4084463</citedby><cites>FETCH-LOGICAL-c291t-af005dfdbd0a8e0f035ed6b253afb3a837ca609bf3842917c286f389ff4084463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7307939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7307939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ranjbar Zefreh, Mahdi</creatorcontrib><creatorcontrib>Salehi, Jawad A.</creatorcontrib><title>Theoretical Studies of Ultrashort Light Pulse Spectrally-Phase-Encoded OCDMA System Using Power-Cubic Optical Nonlinear Preprocessor</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, a spectral-phase-encoded ultrashort light pulse optical code division multiple access (SPE-OCDMA) system employing a novel nonlinear power-cubic optical preprocessor at its receiver's front end is theoretically investigated. The system's mathematical model and the statistical distribution of the decision variable Y, prior to the decision module of the receiver, are discussed. The first three moments of the random decision variable Y are obtained in the context of the above OCDMA system and subsequently used in an appropriate Log-Pearson type 3 (LP3) distribution to represent the random decision variable Y. Multiple access interference (MAI) and amplified spontaneous emission (ASE) noises are taken into account to obtain the bit error rate of the system. Furthermore, the effects of shot and thermal noises are also included in the system performance modeling. In this context, performance comparison of the system based on power-cubic preprocessor and systems employing power-quadratic nonlinear optical thresholders, such as second harmonic generation crystals, are discussed. Finally, through numerical calculations under various conditions, we show the superiority of power-cubic systems, especially in high power regime where MAI is the dominant noise.</description><subject>Adaptive optics</subject><subject>Bit Error Rate (BER) analysis</subject><subject>Code Division Multiple Access</subject><subject>LOG-PEARSON type-3 (LP3) Distribution</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Multiple Access Interference (MAI)</subject><subject>Noise</subject><subject>Nonlinear Optical Loop Mirror (NOLM)</subject><subject>Nonlinear optics</subject><subject>Optical pulse generation</subject><subject>Optical pulses</subject><subject>Optical receivers</subject><subject>Performance Analysis</subject><subject>Power- Nonlinear Receiver</subject><subject>Shot Noise</subject><subject>Spectral Phase Encoded OCDMA (SPEOCDMA)</subject><subject>Thermal Noise</subject><subject>Ultrashort Light Pulse</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rwjAYxsPYYM7tPtglsHNd0iRtehTnvnBTUM8lTd_YSm1c0jK87w9fRNnpfeB9PuCH0D0lI0pJ9vQxW41iQsUo5plgjF-gARVCRnFM2SUakJSxSKYxv0Y33m8JoZzLdIB-VxVYB12tVYOXXV_W4LE1eN10TvnKug7P6k3V4UXfeMDLPejwaJpDtKiUh2jaaltCieeT588xXh58Bzu89nW7wQv7Ay6a9EWt8Xx_WviybVO3oBxeONg7q8F7627RlVGh_u58h2j9Ml1N3qLZ_PV9Mp5FOs5oFylDiChNWZRESSCGMAFlUsSCKVMwJVmqVUKywjDJQyDVsUyCzozhRHKesCF6PPWG5e8efJdvbe_aMJnTlEnJhRQyuMjJpZ313oHJ967eKXfIKcmPrPPAOj-yzs-sQ-ThFKkB4N-eMpJmLGN_lWF8Jg</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Ranjbar Zefreh, Mahdi</creator><creator>Salehi, Jawad A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151215</creationdate><title>Theoretical Studies of Ultrashort Light Pulse Spectrally-Phase-Encoded OCDMA System Using Power-Cubic Optical Nonlinear Preprocessor</title><author>Ranjbar Zefreh, Mahdi ; Salehi, Jawad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-af005dfdbd0a8e0f035ed6b253afb3a837ca609bf3842917c286f389ff4084463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive optics</topic><topic>Bit Error Rate (BER) analysis</topic><topic>Code Division Multiple Access</topic><topic>LOG-PEARSON type-3 (LP3) Distribution</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Multiple Access Interference (MAI)</topic><topic>Noise</topic><topic>Nonlinear Optical Loop Mirror (NOLM)</topic><topic>Nonlinear optics</topic><topic>Optical pulse generation</topic><topic>Optical pulses</topic><topic>Optical receivers</topic><topic>Performance Analysis</topic><topic>Power- Nonlinear Receiver</topic><topic>Shot Noise</topic><topic>Spectral Phase Encoded OCDMA (SPEOCDMA)</topic><topic>Thermal Noise</topic><topic>Ultrashort Light Pulse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbar Zefreh, Mahdi</creatorcontrib><creatorcontrib>Salehi, Jawad A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ranjbar Zefreh, Mahdi</au><au>Salehi, Jawad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Studies of Ultrashort Light Pulse Spectrally-Phase-Encoded OCDMA System Using Power-Cubic Optical Nonlinear Preprocessor</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2015-12-15</date><risdate>2015</risdate><volume>33</volume><issue>24</issue><spage>5062</spage><epage>5072</epage><pages>5062-5072</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, a spectral-phase-encoded ultrashort light pulse optical code division multiple access (SPE-OCDMA) system employing a novel nonlinear power-cubic optical preprocessor at its receiver's front end is theoretically investigated. The system's mathematical model and the statistical distribution of the decision variable Y, prior to the decision module of the receiver, are discussed. The first three moments of the random decision variable Y are obtained in the context of the above OCDMA system and subsequently used in an appropriate Log-Pearson type 3 (LP3) distribution to represent the random decision variable Y. Multiple access interference (MAI) and amplified spontaneous emission (ASE) noises are taken into account to obtain the bit error rate of the system. Furthermore, the effects of shot and thermal noises are also included in the system performance modeling. In this context, performance comparison of the system based on power-cubic preprocessor and systems employing power-quadratic nonlinear optical thresholders, such as second harmonic generation crystals, are discussed. Finally, through numerical calculations under various conditions, we show the superiority of power-cubic systems, especially in high power regime where MAI is the dominant noise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2015.2495334</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2015-12, Vol.33 (24), p.5062-5072 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2015_2495334 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optics Bit Error Rate (BER) analysis Code Division Multiple Access LOG-PEARSON type-3 (LP3) Distribution Mathematical model Mathematical models Multiple Access Interference (MAI) Noise Nonlinear Optical Loop Mirror (NOLM) Nonlinear optics Optical pulse generation Optical pulses Optical receivers Performance Analysis Power- Nonlinear Receiver Shot Noise Spectral Phase Encoded OCDMA (SPEOCDMA) Thermal Noise Ultrashort Light Pulse |
title | Theoretical Studies of Ultrashort Light Pulse Spectrally-Phase-Encoded OCDMA System Using Power-Cubic Optical Nonlinear Preprocessor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Studies%20of%20Ultrashort%20Light%20Pulse%20Spectrally-Phase-Encoded%20OCDMA%20System%20Using%20Power-Cubic%20Optical%20Nonlinear%20Preprocessor&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ranjbar%20Zefreh,%20Mahdi&rft.date=2015-12-15&rft.volume=33&rft.issue=24&rft.spage=5062&rft.epage=5072&rft.pages=5062-5072&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2015.2495334&rft_dat=%3Cproquest_RIE%3E3883669011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738845858&rft_id=info:pmid/&rft_ieee_id=7307939&rfr_iscdi=true |